39 resultados para Optique

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A slit nozzle supersonic expansion containing C2H2 (246 sccm) and N2O (355 sccm) seeded into Ar (1260 sccm) is investigated using CW cavity ring-down spectroscopy, in the 1.5 μm range. The C2H2-N2O van der Waals complex is observed around the 2CH acetylenic band. Despite strong perturbations, 117 b-type lines are assigned. Their combined fit with published microwave data leads to new upper state and improved lower state rotational constants. The Lorentzian width of the assigned line profiles sets the mean lifetime to 1.6 ns. The rotational temperature is estimated to be 15 K from the comparison between observed and simulated spectra. © 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A supersonic expansion containing acetylene seeded into Ar and produced from a circular nozzle is investigated using CW/cavity ring down spectroscopy, in the 1.5 μm range. The results, also involving experiments with pure acetylene and acetylene-He expansions, as well as slit nozzles, demonstrate that the denser central section in the expansion is slightly heated by the formation of acetylene aggregates, resulting into a dip in the monomer absorption line profiles. Acetylene-Ar aggregates are also formed at the edge of the circular nozzle expansion cone. © 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In spectra of jet-cooled C2H2 recorded with an FTIR spectrometer, the ν5, ν4 + ν5, ν3 and ν2 + ν4 + ν5 bands all exhibit an intensity distribution corresponding to ∼6 K for rotation, with no evidence of nuclear spin conversion. Spectra of C2H2 isolated in solid p-H2 show no evidence of rotation of C2H2. The strong interaction between ν3 and ν2 + ν4 + ν5 in the gas phase is diminished in solid p-H2. Lines associated with dimer, trimer and tetramer of C2H2 are identified. Spectral features characteristic of solid state acetylene are observed under jet-cooled conditions. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A set-up combining a high resolution Fourier transform interferometer and a quadrupole mass spectrometer with a supersonic jet expansion produced thanks to a large turbomolecular pumping unit is described. A rotational temperature close to 3 K is demonstrated. Vibration-vibration energy transfer in the expansion affecting the v2 = 1 state in N2O is monitored in the presence of various collision partners. The transfer from the v 2 = 1 state of N2O towards the quasi resonant, lower energy v2 = 1 state of OCS is demonstrated, in particular. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By analyzing measured infrared absorption of pure CH4 gas under both "free" (large sample cell) and "confined" (inside the pores of a silica xerogel sample) conditions we give a demonstration that molecule-molecule and molecule-surface collisions lead to very different propensity rules for rotational-state changes. Whereas the efficiency of collisions to change the rotational state (observed through the broadening of the absorption lines) decreases with increasing rotational quantum number J for CH4-CH4 interactions, CH4-surface collisions lead to J-independent linewidths. In the former case, some (weak) collisions are inefficient whereas, in the latter case, a single collision is sufficient to remove the molecule from its initial rotational level. Furthermore, although some gas-phase collisions leave J unchanged and only modify the angular momentum orientation and/or symmetry of the level (as observed through the spectral effects of line mixing), this is not the case for the molecule-surface collisions since they always change J (in the studied J=0-14 range).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New theoretical and experimental results on the acetylene-Ar van der Waals complex are presented and the literature is reviewed. New ab initio calculations at the MP2 level were performed using large basis sets with diffuse functions and taking into account the basis set superposition error. It was found that the structure of acetylene is not significantly altered by the complexation and that its vibrational frequencies are only slightly lowered. Finally, it was observed that the calculated properties of the complex (structure, vibrational spectrum, bond dissociation energy) are not sensitive to the structure imposed on acetylene. Experimentally, acetylene-Ar was produced in a supersonic expansion under experimental conditions corresponding to 9 K rotational temperature. Thanks to the performances of CW-CRDS detection, the Ka = 0 ← 1, 1 ← 0, and 2 ← 1 sub- bands of the v1 + v3 band could be recorded and resolved and most of their lines assigned. Upper-state rotational constants were fitted, however not including the upper Ka = 2 state, which shows K-doubling the opposite of the expected. The Lorentzian width of most line profiles sets the mean lifetime to some 7.5 ns. Local perturbations affecting line positions and/or line widths are demonstrated. Additional series of lines tentatively attributed to acetylene-Ar are discussed.© 2009 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/published