2 resultados para Object-oriented methods
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
An analysis is carried out, using the prolate spheroidal wave functions, of certain regularized iterative and noniterative methods previously proposed for the achievement of object restoration (or, equivalently, spectral extrapolation) from noisy image data. The ill-posedness inherent in the problem is treated by means of a regularization parameter, and the analysis shows explicitly how the deleterious effects of the noise are then contained. The error in the object estimate is also assessed, and it is shown that the optimal choice for the regularization parameter depends on the signal-to-noise ratio. Numerical examples are used to demonstrate the performance of both unregularized and regularized procedures and also to show how, in the unregularized case, artefacts can be generated from pure noise. Finally, the relative error in the estimate is calculated as a function of the degree of superresolution demanded for reconstruction problems characterized by low space–bandwidth products.
Resumo:
In this paper we consider the problems of object restoration and image extrapolation, according to the regularization theory of improperly posed problems. In order to take into account the stochastic nature of the noise and to introduce the main concepts of information theory, great attention is devoted to the probabilistic methods of regularization. The kind of the restored continuity is investigated in detail; in particular we prove that, while the image extrapolation presents a Hölder type stability, the object restoration has only a logarithmic continuity. © 1979 American Institute of Physics.