3 resultados para ORGANOMERCAPTAN MONOLAYERS

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monolayers of octadecanethiolate on Au(1 1 1) surface were formed under electrochemical control. The influence of the formation time on the reductive desorption process was studied by cyclic voltammetry and chronoamperometry. When the formation time is increased, the reductive desorption peak observed on the voltammograms is significantly shifted in the negative direction, while the cathodic charge is only slightly affected. This behaviour is attributed to a higher degree of organisation of the monolayers for longer formation times, highlighting the role of defect sites in promoting the dissolution. A good agreement was found between our experimental chronoamperograms and theoretical models describing the dissolution process by a shrinkage mechanism. It is demonstrated that a reorganisation process takes place, consisting in the merging of small condensed domains into larger ones. This annealing phenomenon is time and potential dependent, the largest condensed domains being obtained for the longest formation times and least negative potentials. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour towards electron transfer of self-assembled monolayers of 2-mercaptobenzimidazole (MBI) and 2-mercaptobenzimidazole-5-sulfonate (MBIS) on Au(1 1 1) was examined by cyclic voltammetry. The influence of the monolayers was drastically dependent on the charge of the redox probe used. When [Ru(NH3)6]3+ is used, a post-adsorption peak characteristic of the adsorption of the redox probe is detected only at the MBIS modified electrode. Taking advantage of this difference, ac voltammetry has been used to determine the surface composition when mixed monolayers are formed by immersion of the gold substrate in mixtures of different molar fractions of MBI and MBIS. Results clearly indicate that the ionic strength of the immersion solution plays a key role in the surface composition when a charged surfactant is mixed with non-charged surfactant. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding of the electroactive hexaammineruthenium (III) complex ions to anionic self-assembled monolayers (SAMs) has been investigated by means of chronocoulometry and ac voltammetry. From chronocoulometric data recorded in 10-2 M LiClO4 containing different [Ru(NH3)6]3+ concentrations, we have established the adsorption isotherm of [Ru(NH3)6]3+ on a compact monolayer of 2-mercaptobenzimidazole-5-sulfonate (MBIS) self-assembled on Au(1 1 1). The data were satisfactorily fitted to the linearized Langmuir adsorption isotherm and a binding constant of 4.0 (±0.4) × 106 M-1 has been determined. The electrostatic binding of [Ru(NH3)6]3+ to a dilute PNA-DNA monolayer formed after hybridization on a PNA-modified gold electrode by self-assembly from a mixed solution of mercaptobutan-1-ol and PNA oligonucleotides has been studied by ac voltammetry. The admittance of the PNA-modified electrode after hybridization with complementary DNA was measured in 0.01 M Tris-HCl buffer containing different [Ru(NH3)6]3+ concentrations. Based on these data, a binding constant of [Ru(NH3)6]3+ to the surface-confined PNA-DNA duplex was derived from the Langmuir isotherm and amounts to 2.9 (±0.3) × 105 M-1. As the interactions between [Ru(NH3)6]3+ and the immobilized PNA-DNA hybrids on the gold surface are essentially electrostatic, the adsorption of the highly charged cationic redox complex at low concentrations to the negatively charged PNA-DNA modified surface is in large competition with other monovalent cations present in the electrolyte at higher concentrations. The influence of competing sodium cations was thus studied by adding different NaCl concentrations in the 0.01 M Tris-HCl electrolyte. © 2008 Elsevier Ltd. All rights reserved.