3 resultados para Numerical Computations
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We propose a new formulation of Miller's regularization theory, which is particularly suitable for object restoration problems. By means of simple geometrical arguments, we obtain upper and lower bounds for the errors on regularized solutions. This leads to distinguish between ' Holder continuity ' which is quite good for practical computations and ` logarithmic continuity ' which is very poor. However, in the latter case, one can reconstruct local weighted averages of the solution. This procedure allows for precise valuations of the resolution attainable in a given problem. Numerical computations, made for object restoration beyond the diffraction limit in Fourier optics, show that, when logarithmic continuity holds, the resolution is practically independent of the data noise level. © 1980 Taylor & Francis Group, LLC.
Resumo:
The problem of inverse diffraction from plane to plane is considered in the case where a finite aperture exists in the boundary plane. Singular values and singular functions for the problem are introduced, and the number of degrees of freedom is defined in terms of the distribution of the singular values. Numerical computations are presented for the one-dimensional problem, and it is shown that the effect of evanescent waves disappears at a distance of approximately one wavelength from the boundary plane, even when the dimension of the slit is comparable with the wavelength of the diffracted field. © 1983 Taylor & Francis Group, LLC.
Resumo:
For pt.I see ibid. vol.3, p.195 (1987). The authors have shown that the resolution of a confocal scanning microscope can be improved by recording the full image at each scanning point and then inverting the data. These analyses were restricted to the case of coherent illumination. They investigate, along similar lines, the incoherent case, which applies to fluorescence microscopy. They investigate the one-dimensional and two-dimensional square-pupil problems and they prove, by means of numerical computations of the singular value spectrum and of the impulse response function, that for a signal-to-noise ratio of, say 10%, it is possible to obtain an improvement of approximately 60% in resolution with respect to the conventional incoherent light confocal microscope. This represents a working bandwidth of 3.5 times the Rayleigh limit.