2 resultados para Novikov Cohomology

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lovelock terms are polynomial scalar densities in the Riemann curvature tensor that have the remarkable property that their Euler-Lagrange derivatives contain derivatives of the metric of an order not higher than 2 (while generic polynomial scalar densities lead to Euler-Lagrange derivatives with derivatives of the metric of order 4). A characteristic feature of Lovelock terms is that their first nonvanishing term in the expansion g λμ = η λμ + h λμ of the metric around flat space is a total derivative. In this paper, we investigate generalized Lovelock terms defined as polynomial scalar densities in the Riemann curvature tensor and its covariant derivatives (of arbitrarily high but finite order) such that their first nonvanishing term in the expansion of the metric around flat space is a total derivative. This is done by reformulating the problem as a BRST cohomological one and by using cohomological tools. We determine all the generalized Lovelock terms. We find, in fact, that the class of nontrivial generalized Lovelock terms contains only the usual ones. Allowing covariant derivatives of the Riemann tensor does not lead to a new structure. Our work provides a novel algebraic understanding of the Lovelock terms in the context of BRST cohomology. © 2005 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the problem of introducing consistent self-couplings in free theories for mixed tensor gauge fields whose symmetry properties are characterized by Young diagrams made of two columns of arbitrary (but different) lengths. We prove that, in flat space, these theories admit no local, Poincaré-invariant, smooth, selfinteracting deformation with at most two derivatives in the Lagrangian. Relaxing the derivative and Lorentz-invariance assumptions, there still is no deformation that modifies the gauge algebra, and in most cases no deformation that alters the gauge transformations. Our approach is based on a Becchi-Rouet-Stora-iyutin (BRST) -cohomology deformation procedure. © 2005 American Institute of Physics.