4 resultados para Nicholas II, Emperor of Russia, 1868-1918.
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The tris[tetrachlorobenzenediolato]phosphate(v) anion (TRISPHAT) is known to be an efficient NMR chiral shift agent for various chiral cationic species. Here we compare the efficiency of TRISPHAT and of a chiral lanthanide shift reagent for the determination of the enantiomeric purity of the chiral building block [Ru(phen)[2]PY[2]][2][+] which possesses C[2] symmetry. We also discuss our results in terms of the geometry of interaction between the Ru(II) complex and the TRISPHAT anion.
Resumo:
One hundred and sixteen women with measurable metastatic breast cancer participated in a randomised phase II study of single agent liposomal pegylated doxorubicin (Caelyx) given either as a 60 mg/m2 every 6 weeks (ARM A) or 50 mg/m2 every 4 weeks (ARM B) schedule. Patients were over 65 years of age or, if younger, had refused or been unsuitable for standard anthracyclines. The aims of the study were to evaluate toxicity and dose delivery with the two schedules and obtain further information on the response rate of liposomal pegylated doxorubicin as a single agent in anthracycline nai ve advanced breast cancer. Twenty-six patients had received prior adjuvant chemotherapy (including an anthracycline in 10). Sixteen had received non-anthracycline-based first-line chemotherapy for advanced disease. One hundred and eleven patients were evaluable for toxicity and 106 for response. The delivered dose intensity (DI) was 9.8 mg/m2 (95% CI, 7.2-10.4) with 37 (69%) achieving a DI of >90% on ARM A and 11.9 mg/m2 (95% CI, 7.5-12.8) with 37 (65%) achieving a DI of >90% on ARM B. The adverse event profiles of the two schedules were distinctly different. Mucositis was more common with the every 6 weeks regimen (35% CTC grade 3/4 in ARM A, 14% in ARM B) but palmar plantar erythrodysesthesia (PPE) was more frequent with the every 4 weeks regimen (2% CTC grade 3/4 in ARM A, 16% in ARM B). Confirmed objective partial responses by RECIST criteria were seen with both schedules; 15/51 (29%) on ARM A and 17/56 (31%) on ARM B. Liposomal pegylated doxorubicin showed significant activity in advanced breast cancer with a generally favourable side-effect profile. The high frequency of stomatitis seen with 6 weekly treatment makes this the less preferred of the two schedules tested.
Resumo:
This paper was selected by the editors of the Journal of Chemical Physics as one of the few of the many notable JCP articles published in 2009 that present ground-breaking research
Resumo:
Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (<100 μm) from different volcanoes were measured for their specific surface area, as, porosity and water adsorption properties with the aim to provide insights into the capacity of silicate ash particles to react with gases, including water vapour. To do so, we performed high-resolution nitrogen and water vapour adsorption/desorption experiments at 77 K and 303 K, respectively. The nitrogen data indicated as values in the range 1.1-2.1 m2/g, except in one case where as of 10 m2/g was measured. This high value is attributed to incorporation of hydrothermal phases, such as clay minerals, in the ash surface composition. The data also revealed that the ash samples are essentially non-porous, or have a porosity dominated by macropores with widths >500 Å All the specimens had similar pore size distributions, with a small peak centered around 50 Å These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ∼10-2 g. Some volcanic implications of this study are discussed. © Springer-Verlag 2004.