3 resultados para New England Yearly Meeting of Friends.

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutron multidetector DéMoN has been used to investigate the symmetric splitting dynamics in the reactions 58.64Ni + 208Pb with excitation energies ranging from 65 to 186 MeV for the composite system. An analysis based on the new backtracing technique has been applied on the neutron data to determine the two-dimensional correlations between the parent composite system initial thermal energy (EthCN) and the total neutron multiplicity (νtot), and between pre- and post-scission neutron multiplicities (νpre and νpost, respectively). The νpre distribution shape indicates the possible coexistence of fast-fission and fusion-fission for the system 58Ni + 208Pb (Ebeam = 8.86 A MeV). The analysis of the neutron multiplicities in the framework of the combined dynamical statistical model (CDSM) gives a reduced friction coefficient β = 23 ± 2512 × 1021 s-1, above the one-body dissipation limit. The corresponding fission time is τf = 40 ± 4620 × 10-21 s. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Ru(BPY)2POQ-Nmet]2+ and [Ru(TAP)2POQ-Nmet]2+ (1 and 3) are bifunctional complexes composed of a metallic unit linked by a flexible chain to an organic unit. They have been prepared as photoprobes or photoreagents of DNA. In this work, the spectroscopic properties of these bifunctional complexes in the absence of DNA are compared with those of the monofunctional analogues [Ru(BPY)2Phen]2+, [Ru-(BPY)2acPhen]2+, [Ru(TAP)2Phen]2+, and [Ru(TAP)2acPhen]2+ (2 and 4). The electrospray mass spectrometry and absorption data show that the quinoline moiety exists in the protonated and nonprotonated form. Although the bifunctional complex containing 2,2′-bipyridine (BPY) ligands exhibits photophysical properties similar to those of the monofunctional compounds, the bifunctional complex with 1,4,5,8-tetraazaphenanthrene (TAP) ligands behaves quite differently. It has weaker relative emission quantum yields and shorter luminescence lifetimes than the monofunctional TAP analogue when the quinoline unit is nonprotonated. This indicates an efficient intramolecular quenching of the 3MLCT (metal to ligand charge transfer) excited state of the TAP metallic moiety. When the organic unit is protonated, there is no internal quenching. In organic solvent, the nonquenched excited metallic unit (bearing a protonated quinoline) and the quenched one (bearing a nonprotonated organic unit) are in slow equilibrium as compared to the lifetime of the two emitters. In aqueous solution this equilibrium is faster and is catalysed by the presence of phosphate buffer. Flash photolysis experiments suggest that the intramolecular quenching process originates from a photoinduced electron transfer from the nonprotonated quinoline to the excited Ru(TAP)2 2+ moiety.