1 resultado para Multi-area power systems
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Filtro por publicador
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (19)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Boston University Digital Common (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (23)
- CentAUR: Central Archive University of Reading - UK (26)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Dalarna University College Electronic Archive (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (8)
- Digital Commons at Florida International University (15)
- Digital Peer Publishing (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Indian Institute of Science - Bangalore - Índia (127)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (77)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (120)
- Queensland University of Technology - ePrints Archive (177)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (115)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad Politécnica de Madrid (21)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (1)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (16)
- University of Queensland eSpace - Australia (6)
- University of Southampton, United Kingdom (8)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Static state estimators currently in use in power systems are prone to masking by multiple bad data. This is mainly because the power system regression model contains many leverage points; typically they have a cluster pattern. As reported recently in the statistical literature, only high breakdown point estimators are robust enough to cope with gross errors corrupting such a model. This paper deals with one such estimator, the least median of squares estimator, developed by Rousseeuw in 1984. The robustness of this method is assessed while applying it to power systems. Resampling methods are developed, and simulation results for IEEE test systems discussed. © 1991 IEEE.