2 resultados para Mri

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Open skull surgery of deeply located intracerebral lesions requires precise determination of the treatment area in 3-dimensional (3-D) space. 3-D MRI can give important additional information in presurgical determination of the surgical approach to the target, taking into account highly functional brain areas and important vascular structures. The day before surgery, a grid composed of 9 tubings intersecting at 90° at 1 cm intervals and filled with a Q1SO4 solution is firmly attached to the skin of the patient’s head in the presumed region of the craniotomy. A 3-D turbo-FLASH sequence is then performed in the sagittal plane after intravenous Gd-DOTA injection on a IT Magnetom. 3-D surface reconstruction of the cortical gyri and sulci is performed. Once the gyri are identified, the 3-D program is then implemented in order to perform a color display of the cortical veins and of the tumor boundaries. The surgical access is then chosen by the surgeon, taking into account highly functional areas. Finally, the boundaries of the tumor are projected on the cortex reconstruction and on the external reference placed on the skin. The entry place for surgery as well as the size of craniotomy are drawn on the skin and the tubed grid is removed. The accuracy of this method tested in 9 patients with deeply located brain tumors or arteriovenous malformations was very satisfactory. In daily practice, this method is a valuable technique providing important clinical information in determining the shortest and safest way through the brain tissue, decreasing possible functional deficit and reducing craniotomy size in cases of difficult to access deep brain areas. Our method does not require a stereotactic frame permanently fixed to the head of the patient during surgery. © 1994 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study has investigated the effects of herpes simplex thymidine kinase gene (HSV-tk) transfer followed by ganciclovir treatment as adjuvant gene therapy to surgical resection in patients with recurrent glioblastoma multiforme (GBM). The study was open and single-arm, and aimed at assessing the feasibility and safety of the technique and indications of antitumor activity. In 48 patients a suspension of retroviral vector-producing cells (VPCs) was administered by intracerebral injection immediately after tumor resection. Intravenous ganciclovir was infused daily 14 to 27 days after surgery. Patients were monitored for adverse events and for life by regular biosafety assaying. Tumor changes were monitored by magnetic resonance imaging (MRI). Reflux during injection was a frequent occurrence but serious adverse events during the treatment period (days 1-27) were few and of a nature not unexpected in this population. One patient experienced transient neurological disorders associated with postganciclovir MRI enhancement. There was no evidence of replication-competent retrovirus in peripheral blood leukocytes or in tissue samples of reresection or autopsy. Vector DNA was shown in the leukocytes of some patients but not in autopsy gonadal samples. The median survival time was 8.6 months, and the 12-month survival rate was 13 of 48 (27%). On MRI studies, tumor recurrence was absent in seven patients for at least 6 months and for at least 12 months in two patients, one of whom remains recurrence free at more than 24 months. Treatment-characteristic images of injection tracks and intracavity hemoglobin were apparent. In conclusion, the gene therapy is feasible and appears to be satisfactorily safe as an adjuvant to the surgical resection of recurrent GBM, but any benefit appears to be marginal. Investigation of the precise effectiveness of this gene therapy requires prospective, controlled studies.