1 resultado para Median computation
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Filtro por publicador
- Aberdeen University (5)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (2)
- Aston University Research Archive (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (142)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (38)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CentAUR: Central Archive University of Reading - UK (29)
- Cochin University of Science & Technology (CUSAT), India (13)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (26)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (63)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Harvard University (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (210)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (44)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Scielo Saúde Pública - SP (6)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (27)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (4)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (16)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (3)
- University of Michigan (54)
- University of Queensland eSpace - Australia (107)
- University of Southampton, United Kingdom (4)
- WestminsterResearch - UK (2)
Resumo:
Static state estimators currently in use in power systems are prone to masking by multiple bad data. This is mainly because the power system regression model contains many leverage points; typically they have a cluster pattern. As reported recently in the statistical literature, only high breakdown point estimators are robust enough to cope with gross errors corrupting such a model. This paper deals with one such estimator, the least median of squares estimator, developed by Rousseeuw in 1984. The robustness of this method is assessed while applying it to power systems. Resampling methods are developed, and simulation results for IEEE test systems discussed. © 1991 IEEE.