1 resultado para Matrix function approximation
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (1)
- Aston University Research Archive (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (27)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (43)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (7)
- Diposit Digital de la UB - Universidade de Barcelona (6)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (12)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (70)
- Instituto Politécnico de Bragança (1)
- Massachusetts Institute of Technology (10)
- National Center for Biotechnology Information - NCBI (14)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (495)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (49)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (6)
- University of Washington (1)
Resumo:
We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1/2-ε)-approximations for CLIQUE require LPs of size 2nΩ(ε). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov's [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.