10 resultados para Maltose-binding protein
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Hypogammaglobulinemia (hypo-Ig) and low mannose binding protein (MBP) levels might be involved in the infectious risk in renal transplantation. In 152 kidney transplant recipients treated with calcineurin inhibitors (CNI) and mycophenolate mofetil (MMF), during the first year, we prospectively recorded the incidence of hypogammaglobulinemia, and low MBP levels. Their influence on infectious complications was evaluated in 92 patients at 3 and 12 months (T3 and T12). The proportion of deficiency increased significantly: hypo-IgG: 6% (T0), 45% (T3), and 30% (T12) (P < 0.001); hypo-MBP: 5%, 11%, and 12% (P = 0.035). Hypo-IgG at T3 was not associated with an increased incidence of first-year infections. A significantly higher proportion of patients with combined hypogammaglobulinemia [IgG+ (IgA and/or IgM)] at T3 and with isolated hypo-IgG at T0 developed infections until T3 compared with patients free of these deficits (P < 0.05). Low MBP levels at T3 were associated with more sepsis and viral infections. Hypogammaglobulinemia is frequent during the first year after renal transplantation in patients treated with a CNI and MMF. Hypo-IgG at T0 and combined Igs deficts at T3 were associated with more infections. MBP deficiency might emerge as an important determinant of the post-transplant infectious risk.
Resumo:
The 78-kDa glucose-regulated protein (GRP78) is ubiquitously expressed in many cell types. Its promoter contains multiple protein-binding sites and functional elements. In this study we examined a high affinity protein-binding site spanning bp -198 to -180 of the rat grp78 promoter, using nuclear extracts from both B-lymphoid and HeLa cells. This region contains a sequence TGACGTGA which, with the exception of one base, is identical to the cAMP-response element (CRE). Site-directed mutagenesis reveals that this sequence functions as a major basal level regulatory element in hamster fibroblast cells and is also necessary to maintain high promoter activity under stress-induced conditions. By gel mobility shift analysis, we detect two specific protein complexes. The major specific complex I, while immunologically distinct from the 42-kDa CRE-binding protein (CREB), binds most strongly to the grp site, but also exhibits affinity for the CRE consensus sequence. As such, complex I may consist of other members of the CREB/activating transcription factor protein family. The minor specific complex II consists of CREB or a protein antigenically related to it. A nonspecific complex III consists of the Ku autoantigen, an abundant 70- to 80-kDa protein complex in HeLa nuclear extracts. By cotransfection experiments, we demonstrate that in F9 teratocarcinoma cells, the grp78 promoter can be transactivated by the phosphorylated CREB or when the CREB-transfected cells are treated with the calcium ionophore A23187. The differential regulation of the grp78 gene by cAMP in specific cell types and tissues is discussed.
Resumo:
Background: Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) remains a poorly understood complication in HIV-TB co-infected patients initiating antiretroviral therapy (ART). The role of the innate immune system in TB-IRIS is becoming increasingly apparent, however the potential involvement in TB-IRIS of a leaky gut and proteins that interfere with TLR stimulation by binding PAMPs has not been investigated before. Here we aimed to investigate the innate nature of the cytokine response in TB-IRIS and to identify novel potential biomarkers. Methods: From a large prospective cohort of HIV-TB co-infected patients receiving TB treatment, we compared 40 patients who developed TB-IRIS during the first month of ART with 40 patients matched for age, sex and baseline CD4 count who did not. We analyzed plasma levels of lipopolysaccharide (LPS)-binding protein (LBP), LPS, sCD14, endotoxin-core antibody, intestinal fatty acid-binding protein (I-FABP) and 18 pro-and anti-inflammatory cytokines before and during ART. Results: We observed lower baseline levels of IL-6 (p = 0.041), GCSF (p = 0.036) and LBP (p = 0.016) in TB-IRIS patients. At IRIS event, we detected higher levels of LBP, IL-1RA, IL-4, IL-6, IL-7, IL-8, G-CSF (p ≤ 0.032) and lower I-FABP levels (p = 0.013) compared to HIV-TB co-infected controls. Only IL-6 showed an independent effect in multivariate models containing significant cytokines from pre-ART (p = 0.039) and during TB-IRIS (p = 0.034). Conclusion: We report pre-ART IL-6 and LBP levels as well as IL-6, LBP and I-FABP levels during IRIS-event as potential biomarkers in TB-IRIS. Our results show no evidence of the possible contribution of a leaky gut to TB-IRIS and indicate that IL-6 holds a distinct role in the disturbed innate cytokine profile before and during TB-IRIS. Future clinical studies should investigate the importance and clinical relevance of these markers for the diagnosis and treatment of TB-IRIS. Copyright: © 2013 Goovaerts et al.
Resumo:
The incidence of prostate cancer is increasing in western countries because of population aging. Prostate cancer begins as an androgen-dependent disease, but it can become androgen independent at a later stage or in tumors recurring after an antihormonal treatment. Although many genetic events have been described to be involved in androgen-dependent and/or -independent prostate cancer growth, little is known about the contribution of epigenetic events. Here we have examined the possibility that the methyl-CpG-binding protein MECP2 might play a role in controlling the growth of prostate cancer cells. Inhibition of MECP2 expression by stable short hairpin RNA stopped the growth of both normal and cancer human prostate cells. In addition, ectopic expression of the MECP2 conferred a growth advantage to human prostate cancer cells. More importantly, this expression allowed androgen-dependent cells to grow independently of androgen stimulation and to retain tumorigenic properties in androgen-depleted conditions. Analysis of signaling pathways showed that this effect is independent of androgen receptor signaling. Instead, MECP2 appears to act by maintaining a constant c-myc level during antihormonal treatment. We further show that MECP2-expressing cells possess a functional p53 pathway and are still responsive to chemotherapeutic drugs.
Resumo:
The final step of the transduction pathway is the activation of gene transcription, which is driven by kinase cascades leading to changes in the activity of many transcription factors. Among these latter, PEA3/E1AF, ER81/ETV1, and ERM, members of the well conserved PEA3 group from the Ets family are involved in these processes. We show here that protein kinase A (PKA) increases the transcriptional activity of human ERM and human ETV1, through a Ser residue situated at the edge of the ETS DNA-binding domain. PKA phosphorylation does not directly affect the ERM transactivation domains but does affect DNA binding activity. Unphosphorylated wild-type ERM bound DNA avidly, whereas after PKA phosphorylation it did so very weakly. Interestingly, S367A mutation significantly reduced the ERM-mediated transcription in the presence of the kinase, and the DNA binding of this mutant, although similar to that of unphosphorylated wild-type protein, was insensitive to PKA treatment. Mutations, which may mimic a phosphorylated serine, converted ERM from an efficient DNA-binding protein to a poor DNA binding one, with inefficiency of PKA phosphorylation. The present data clearly demonstrate a close correlation between the capacity of PKA to increase the transactivation of ERM and the drastic down-regulation of the binding of the ETS domain to the targeted DNA. What we thus demonstrate here is a relatively rare transcription activation mechanism through a decrease in DNA binding, probably by the shift of a non-active form of an Ets protein to a PKA-phosphorylated active one, which should be in a conformation permitting a transactivation domain to be active.
Resumo:
After becoming competent for resuming meiosis, fully developed mammalian oocytes are maintained arrested in prophase I until ovulation is triggered by the luteotropin surge. Meiotic pause has been shown to depend critically on maintenance of cAMP level in the oocyte and was recently attributed to the constitutive Gs (the heterotrimeric GTP-binding protein that activates adenylyl cyclase) signaling activity of the G protein-coupled receptor GPR3. Here we show that mice deficient for Gpr3 are unexpectedly fertile but display progressive reduction in litter size despite stable age-independent alteration of meiotic pause. Detailed analysis of the phenotype confirms premature resumption of meiosis, in vivo, in about one-third of antral follicles from Gpr3-/- females, independently of their age. In contrast, in aging mice, absence of GPR3 leads to severe reduction of fertility, which manifests by production of an increasing number of nondeveloping early embryos upon spontaneous ovulation and massive amounts of fragmented oocytes after superovulation. Severe worsening of the phenotype in older animals points to an additional role of GPR3 related to protection (or rescue) of oocytes from aging. Gpr3-defective mice may constitute a relevant model of premature ovarian failure due to early oocyte aging.
Resumo:
E2F6 is widely expressed in human tissues and cell lines. Recent studies have demonstrated its involvement in developmental patterning and in the regulation of various genes implicated in chromatin remodelling. Despite a growing number of studies, nothing is really known concerning the E2F6 expression regulation. To understand how cells control E2F6 expression, we analysed the activity of the previously cloned promoter region of the human E2F6 gene. DNase I footprinting, gel electrophoretic-mobility shift, transient transfection and site-directed mutagenesis experiments allowed the identification of two functional NRF-1/α-PAL (nuclear respiratory factor-1/α-palindrome-binding protein)-binding sites within the human E2F6 core promoter region, which are conserved in the mouse and rat E2F6 promoter region. Moreover, ChIP (chromatin immunoprecipitation) analysis demonstrated that overexpressed NRF-1/α-PAL is associated in vivo with the E2F6 promoter. Furthermore, overexpression of full-length NRF-1/α-PAL enhanced E2F6 promoter activity, whereas expression of its dominant-negative form reduced the promoter activity. Our results indicate that NRF-1/α-PAL is implicated in the regulation of basal E2F6 gene expression.
Resumo:
All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (deltaG(o)), which is the sum of enthalpic (deltaH(o)) and entropic (deltaS(o)) terms. These parameters are temperature dependent through the heat capacity change (deltaCp). The thermodynamic parameters deltaH(o) and deltaCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which characterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.
Resumo:
Human alpha-lactalbumin (alpha-LA), a 123-residue calcium-binding protein, has been studied using (15)N NMR relaxation methods in order to characterize backbone dynamics of the native state at the level of individual residues. Relaxation data were collected at three magnetic field strengths and analyzed using the model-free formalism of Lipari and Szabo. The order parameters derived from this analysis are generally high, indicating a rigid backbone. A total of 46 residues required an exchange contribution to T(2); 43 of these residues are located in the alpha-domain of the protein. The largest exchange contributions are observed in the A-, B-, D-, and C-terminal 3(10)-helices of the alpha-domain; these residues have been shown previously to form a highly stable core in the alpha-LA molten globule. The observed exchange broadening, along with previous hydrogen/deuterium amide exchange data, suggests that this part of the alpha-domain may undergo a local structural transition between the well-ordered native structure and a less-ordered molten-globule-like structure.
Resumo:
Although steroid hormones are known to play a predominant role in the regulation of cell growth in hormone-sensitive cancers, their mechanisms of action, especially their interaction with growth factors and/or growth inhibitors, is poorly understood. We have recently observed that the effects of androgens and estrogens on the expression of the major protein found in human breast gross cystic disease fluid, protein-24, are opposite to their respective action on cell proliferation in human breast cancer cell lines. Somewhat surprisingly, the recent elucidation of the amino acid sequence of this progesterone binding protein reveals that this tumor marker is apolipoprotein D (apo D), a member of a superfamily of lipophilic ligand carrier proteins. The present study was designed to determine whether apo D is secreted by human prostate cancer cells and could thus be a new marker of steroid action in these cancer cells, and whether the sex steroid-induced stimulation of apo D secretion coincides with inhibition of cell proliferation. We took advantage of the biphasic pattern of the effect of steroids on the proliferation of the human prostate cancer LNCaP cell line, which offers the opportunity to discriminate between positive and negative steroid receptor-regulated cell growth processes. A 10-day exposure to low concentrations of dihydrotestosterone and testosterone caused a potent stimulation of LNCaP cell proliferation, whereas incubation with higher concentrations of these androgens led to a progressive decrease in cell proliferation towards basal levels. The biphasic action of androgens was also observed on apo D secretion, the effects on apo D secretion being inversely related to their action on LNCaP cell proliferation. Similar opposite biphasic effects were also observed with 9 other steroids, thus indicating that the stimulation of secretion of this new biochemical marker coincides with inhibition of cell proliferation in LNCaP human prostatic cancer cells.