3 resultados para MOLECULAR-PARAMETERS

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (deltaG(o)), which is the sum of enthalpic (deltaH(o)) and entropic (deltaS(o)) terms. These parameters are temperature dependent through the heat capacity change (deltaCp). The thermodynamic parameters deltaH(o) and deltaCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which characterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e. spectra in which the individual lines are not resolved; individual line parameters and absorption cross-sections for bands in the ultraviolet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 42 molecules including many of their isotopologues. © 2009 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the status circa 2001, of the HITRAN compilation that comprises the public edition available through 2001. The HITRAN compilation consists of several components useful for radiative transfer calculation codes: high-resolution spectroscopic parameters of molecules in the gas phase, absorption cross-sections for molecules with very dense spectral features, aerosol refractive indices, ultraviolet line-by-line parameters and absorption cross-sections, and associated database management software. The line-by-line portion of the database contains spectroscopic parameters for 38 molecules and their isotopologues and isotopomers suitable for calculating atmospheric transmission and radiance properties. Many more molecular species are presented in the infrared cross-section data than in the previous edition, especially the chlorofluorocarbons and their replacement gases. There is now sufficient representation so that quasi-quantitative simulations can be obtained with the standard radiance codes. In addition to the description and justification of new or modified data that have been incorporated since the last edition of HITRAN (1996), future modifications are indicated for cases considered to have a significant impact on remote-sensing experiments. © 2003 Elsevier Ltd. All rights reserved.