5 resultados para Logiciel propriétaire
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Whereas the resolving power of an ordinary optical microscope is determined by the classical Rayleigh distance, significant super-resolution, i.e. resolution improvement beyond that Rayleigh limit, has been achieved by confocal scanning light microscopy. Furthermore is has been shown that the resolution of a confocal scanning microscope can still be significantly enhanced by measuring, for each scanning position, the full diffraction image by means of an array of detectors and by inverting these data to recover the value of the object at the focus. We discuss the associated inverse problem and show how to generalize the data inversion procedure by allowing, for reconstructing the object at a given point, to make use also of the diffraction images recorded at other scanning positions. This leads us to a whole family of generalized inversion formulae, which contains as special cases some previously known formulae. We also show how these exact inversion formulae can be implemented in practice.
Resumo:
L'article présente quelques éléments de la procédure mise en place pour traiter un corpus écrit comportant 617 textes (près de 500 000 mots) relatifs aux eurorégions. Complexe et hétérogène à plusieurs titres (technique, linguistique, éditorial, générique, énonciatif), le corpus pose la difficulté majeure de l’appréhension de données multilingues (français, italien, espagnol, anglais, allemand, néerlandais). Sa manipulation a nécessité une réflexion adaptée et une démarche de modélisation que nous qualifions d’« agile » en raison de son caractère souple et itératif. La plateforme d’analyse élaborée permet de disposer de résultats utiles à l’analyse qualitative ultérieure du discours eurorégional. Elle articule un logiciel d'analyse morphosyntaxique éprouvé (TreeTagger) à des programmes (Perl) et à une base de données (SQLite) développés pour optimiser les requêtes multilingues simultanées et l’exportation automatique des résultats. Les fonctionnalités liées à la localisation contextualisée de mots- pivots, au recueil de dénominations et à la détection de segments répétés nous servent ici de guides pour exprimer les besoins de la recherche, les problèmes rencontrés et les solutions proposées. L'analyse d'observables récurrents, à savoir les notions de décision et de responsabilité, illustre le propos.
Resumo:
An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π(Q)=P. These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466, 1991) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of $$P$$P equals the nonnegative rank of its slack matrix S. Moreover, Yannakakis also shows that the nonnegative rank of S is at most 2c, where c is the complexity of any deterministic protocol computing S. In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized. In particular, we prove that the base-2 logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base-2 logarithm of the smallest size of an extended formulation of a polytope P equals the minimum complexity of a randomized communication protocol computing the slack matrix of P in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.
Resumo:
We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1/2-ε)-approximations for CLIQUE require LPs of size 2nΩ(ε). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov's [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.
Resumo:
In this paper we extend recent results of Fiorini et al. on the extension complexity of the cut polytope and related polyhedra. We first describe a lifting argument to show exponential extension complexity for a number of NP-complete problems including subset-sum and three dimensional matching. We then obtain a relationship between the extension complexity of the cut polytope of a graph and that of its graph minors. Using this we are able to show exponential extension complexity for the cut polytope of a large number of graphs, including those used in quantum information and suspensions of cubic planar graphs.