4 resultados para Krupsak, Mary Anne , American
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Interleukin (IL)-10, a potent anti-inflammatory cytokine, limits the severity of acute pancreatitis and downregulates transforming growth factor (TGF)-beta release by inflammatory cells on stimulation. Proinflammatory mediators, reactive oxygen species, and TGF-beta can activate pancreatic stellate cells and their synthesis of collagen I and III. This study evaluates the role of endogenous IL-10 in the modulation of the regeneration phase following acute pancreatitis and in the development of pancreatic fibrosis. IL-10 knockout (KO) mice and their C57BL/6 controls were submitted to repeated courses (3/wk, during 6 wk, followed by 1 wk of recovery) of cerulein-induced acute pancreatitis. TGF-beta(1) release was measured on plasma, and its pancreatic expression was assessed by quantitative RT-PCR and immunohistochemistry. Intrapancreatic IL-10 gene expression was assessed by semiquantitative RT-PCR, and intrapancreatic collagen content was assessed by picrosirius staining. Activated stellate cells were detected by immunohistochemistry. S phase intrapancreatic cells were marked using tritiated thymidine labeling. After repeated acute pancreatitis, IL-10 KO mice had more severe histological lesions and fibrosis (intrapancreatic collagen content) than controls. TGF-beta(1) plasma levels, intrapancreatic transcription, and expression by ductal and interstitial cells, as well as the number of activated stellate cells, were significantly higher. IL-10 KO mice disclosed significantly fewer acinar cells in S phase, whereas the opposite was observed for pseudotubular cells. Endogenous IL-10 controls the regeneration phase and limits the severity of fibrosis and glandular atrophy induced by repeated episodes of acute pancreatitis in mice.
Resumo:
OBJECTIVE: Strict lifelong compliance to a gluten-free diet (GFD) minimizes the long-term risk of mortality, especially from lymphoma, in adult celiac disease (CD). Although serum IgA antitransglutaminase (IgA-tTG-ab), like antiendomysium (IgA-EMA) antibodies, are sensitive and specific screening tests for untreated CD, their reliability as predictors of strict compliance to and dietary transgressions from a GFD is not precisely known. We aimed to address this question in consecutively treated adult celiacs. METHODS: In a cross-sectional study, 95 non-IgA deficient adult (median age: 41 yr) celiacs on a GFD for at least 1 yr (median: 6 yr) were subjected to 1) a dietician-administered inquiry to pinpoint and quantify the number and levels of transgressions (classified as moderate or large, using as a cutoff value the median gluten amount ingested in the overall noncompliant patients of the series) over the previous 2 months, 2) a search for IgA-tTG-ab and -EMA, and 3) perendoscopic duodenal biopsies. The ability of both antibodies to discriminate celiacs with and without detected transgressions was described using receiver operating characteristic curves and quantified as to sensitivity and specificity, according to the level of transgressions. RESULTS: Forty (42%) patients strictly adhered to a GFD, 55 (58%) had committed transgressions, classified as moderate (< or = 18 g of gluten/2 months; median number 6) in 27 and large (>18 g; median number 69) in 28. IgA-tTG-ab and -EMA specificity (proportion of correct recognition of strictly compliant celiacs) was 0.97 and 0.98, respectively, and sensitivity (proportion of correct recognition of overall, moderate, and large levels of transgressions) was 0.52, 0.31, and 0.77, and 0.62, 0.37, and 0.86, respectively. IgA-tTG-ab and -EMA titers were correlated (p < 0.001) to transgression levels (r = 0.560 and R = 0.631, respectively) and one to another (p < 0.001) in the whole patient population (r = 0.834, N = 84) as in the noncompliant (r = 0.915, N = 48) group. Specificity and sensitivity of IgA-tTG-ab and IgA-EMA for recognition of total villous atrophy in patients under a GFD were 0.90 and 0.91, and 0.60 and 0.73, respectively. CONCLUSIONS: In adult CD patients on a GFD, IgA-tTG-ab are poor predictors of dietary transgressions. Their negativity is a falsely secure marker of strict diet compliance.
Resumo:
RATIONALE: Tuberculosis (TB) remains a leading cause of death, and the role of T-cell responses to control Mycobacterium tuberculosis infections is well recognized. Patients with latent TB infection develop strong IFN-gamma responses to the protective antigen heparin-binding hemagglutinin (HBHA), whereas patients with active TB do not. OBJECTIVES: We investigated the mechanism of this difference and evaluated the possible involvement of regulatory T (Treg) cells and/or cytokines in the low HBHA T-cell responses of patients with active TB. METHODS: The impact of anti-transforming growth factor (TGF)-beta and anti-IL-10 antibodies and of Treg cell depletion on the HBHA-induced IFN-gamma secretion was analyzed, and the Treg cell phenotype was characterized by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Although the addition of anti-TGF-beta or anti-IL-10 antibodies had no effect on the HBHA-induced IFN-gamma secretion in patients with active TB, depletion of CD4(+)CD25(high)FOXP3(+) T lymphocytes resulted in the induction by HBHA of IFN-gamma concentrations that reached levels similar to those obtained for latent TB infection. No effect was noted on the early-secreted antigen target-6 or candidin T-cell responses. CONCLUSIONS: Specific CD4(+)CD25(high)FOXP3(+) T cells depress the T-cell-mediated immune responses to the protective mycobacterial antigen HBHA during active TB in humans.
Resumo:
RATIONALE: Tuberculosis (TB) remains a major cause of mortality. A better understanding of the immune responses to mycobacterial antigens may be helpful to develop improved vaccines and diagnostics. OBJECTIVE: The mycobacterial antigen heparin-binding-hemagglutinin (HBHA) induces strong interferon-gamma (IFN-gamma) responses by circulating lymphocytes from Mycobacterium tuberculosis latently infected subjects, and low responses associated with CD4(+) regulatory T (Treg) cells in TB patients. Here, we investigated HBHA-specific IFN-gamma responses at the site of the TB disease. METHODS: Bronchoalveolar lavages, pleural fluids and blood were prospectively collected from 61 patients with a possible diagnosis of pulmonary and/or pleural TB. HBHA-specific IFN-gamma production was analyzed by flow cytometry and ELISA. The suppressive effect of pleural Treg cells was investigated by depletion experiments. MEASUREMENTS AND MAIN RESULTS: The percentages of HBHA-induced IFN-gamma(+) alveolar and pleural lymphocytes were higher for pulmonary (P<0.0001) and for pleural (P<0.01) TB than for non-TB controls. Local CD4(+) and CD8(+) T cells produced the HBHA-specific IFN-gamma. This local secretion was not suppressed by Treg lymphocytes, contrasting with previously reported data on circulating lymphocytes. CONCLUSION: TB patients display differential effector and regulatory T cell responses to HBHA in local and circulating lymphocytes with a predominant effector CD4(+) and CD8(+) response locally, compared to a predominant Treg response among circulating lymphocytes. These findings may be helpful for the design of new vaccines against TB, and the detection of HBHA-specific T cells at the site of the infection may be a promising tool for the rapid diagnosis of active TB.