2 resultados para Java RMI
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The pinnotherid crab Dissodactylus primitivus lives parasitically on 2 burrowingechinoid species, Meoma ventricosa and Plagiobrissus grandis. The fecundity of female crabsvaries between hosts, and is higher when parasitizing P. grandis than M. ventricosa. Moreover, thehosts present great variations in morphology (size and density of spines). These characteristicssuggest the potential to differentiate crabs according to host species. We investigated the genetic(microsatellites) and morphometric (outline analysis) differentiation of this parasitic crab between2 host species at 1 Jamaican site (Western Lagoon, Discovery Bay), and compared it with geographicdifferentiation among 4 sites along the north coast of Jamaica. Greater genetic differencesbetween parasites of the 2 sympatric hosts than between parasites of a single host at different geographiclocations would indicate host differentiation. Genetic analyses (microsatellites) did notdetect spatial differentiation (probably due to local hydrography) or differentiation according tohost species. This lack of host differentiation could be explained by mobility of adult crabsbetween hosts. However, there was weak but significant morphological differentiation betweenfemale crabs from the 2 hosts. This morphological difference may reflect constraints due to hostmorphology.
Resumo:
Peptide microarrays are useful tools for characterizing the humoral response against methylated antigens. They are usually prepared by printing unmodified and methylated peptides on substrates such as functionalized microscope glass slides. The preferential capture of antibodies by methylated peptides suggests the specific recognition of methylated epitopes. However, unmodified peptide epitopes can be masked due to their interaction with the substrate. The accessibility of unmodified peptides and thus the specificity of the recognition of methylated peptide epitopes can be probed using the in situ methylation procedure described here. Alternately, the in situ methylation of peptide microarrays allows probing the presence of antibodies directed toward methylated epitopes starting from easy-to-make and cost-effective unmodified peptide libraries. In situ methylation was performed using formaldehyde in the presence of sodium cyanoborohydride and nickel chloride. This chemical procedure converts lysine residues into mono- or dimethyl lysines.