2 resultados para Inhibitory activity

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by polyclonal B cell activation and by the production of anti-double-stranded (ds) DNA antibodies. Given the inhibitory effects of IL-12 on humoral immune responses, we investigated whether IL-12 displayed such an activity on in vitro immunoglobulin production by SLE PBMC. Spontaneous IgG, IgG1, IgG2, IgG3 and IgM antibody production was dramatically reduced by addition of IL-12. These results were confirmed by Elispot assays detecting IgG- and anti-dsDNA-secreting cells. While IL-6 and TNF titres measured in PBMC supernatants were not modified by addition of IL-12, interferon-gamma (IFN-gamma) titres were up-regulated and IL-10 production down-regulated. Since addition of IFN-gamma did not down-regulate immunoglobulin production and since the inhibitory activity of IL-12 on immunoglobulin synthesis was not suppressed by anti-IFN-gamma antibody, we concluded that the effect of IL-12 on immunoglobulin production was not mediated through IFN-gamma. Our data also argue against the possibility that down-regulation of endogenous IL-10 production was responsible for the effect of IL-12. Thus, inhibition of IL-10 production by IFN-gamma was not accompanied by inhibition of immunoglobulin production, and conversely, restoration of IL-10 production by anti-IFN-gamma antibody did not suppress the inhibitory activity exerted by IL-12 on immunoglobulin production. Taken together, our data indicate that reduction of excessive immunoglobulin and anti-dsDNA antibody production by lupus PBMC can be achieved in vitro by IL-12, independently of IFN-gamma and IL-10 modulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of tumor-associated macrophages (TAMs) is controversial. Although most studies on different cancer types associate them with a poorer prognosis, interestingly in colon cancer, most articles indicate that TAMs prevent tumor development; patients with high TAMs have better prognosis and survival rate. M1-polarized macrophages produce high level of tumor necrosis factor-alpha, interleukin-1 beta or reactive oxygen species, which can effectively kill susceptible tumor cells. In contrast, M2-polarized macrophages can secrete different factors that promote tumor cell growth and survival or favor angiogenesis and tissue invasion. Considering the beneficial role of TAMs in colon cancer, we speculated that they may not display the M2 polarization commonly observed in tumor microenvironment, but rather develop M1 properties. Therefore, we used an in vitro model to analyze the effects of supernatants from M1-polarized macrophages on DLD-1 colon cancer cells. Our data indicate that the conditioned medium from LPS-activated macrophages (CM-LAM) contains a high level of granulocyte-macrophage colony-stimulating factor, interleukins-1 beta, -6, -8 and tumor necrosis factor-alpha, and that it exerts a marked growth inhibitory activity on DLD-1 cells. Prolonged exposure to CM-LAM results in cell death by apoptosis. Such exposure to CM-LAM leads to the modulation of gal-3 expression: we observed a marked downregulation of gal-3 mRNA and protein expression following CM-LAM treatment. We also describe that the knockdown of gal-3 sensitizes DLD-1 cells to CM-LAM. These data suggest an involvement of gal-3 in the response of colon cancer cells to proinflammatory stimuli, such as the conditioned medium from activated macrophages.