11 resultados para INVERSE PROBLEM
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
For pt.I. see ibid. vol.1, p.301 (1985). In the first part of this work a general definition of an inverse problem with discrete data has been given and an analysis in terms of singular systems has been performed. The problem of the numerical stability of the solution, which in that paper was only briefly discussed, is the main topic of this second part. When the condition number of the problem is too large, a small error on the data can produce an extremely large error on the generalised solution, which therefore has no physical meaning. The authors review most of the methods which have been developed for overcoming this difficulty, including numerical filtering, Tikhonov regularisation, iterative methods, the Backus-Gilbert method and so on. Regularisation methods for the stable approximation of generalised solutions obtained through minimisation of suitable seminorms (C-generalised solutions), such as the method of Phillips (1962), are also considered.
Resumo:
Inverse diffraction consists in determining the field distribution on a boundary surface from the knowledge of the distribution on a surface situated within the domain where the wave propagates. This problem is a good example for illustrating the use of least-squares methods (also called regularization methods) for solving linear ill-posed inverse problem. We focus on obtaining error bounds For regularized solutions and show that the stability of the restored field far from the boundary surface is quite satisfactory: the error is proportional to ∊(ðŗ‚ ≃ 1) ,ðŗœ being the error in the data (Hölder continuity). However, the error in the restored field on the boundary surface is only proportional to an inverse power of │In∊│ (logarithmic continuity). Such a poor continuity implies some limitations on the resolution which is achievable in practice. In this case, the resolution limit is seen to be about half of the wavelength. Copyright © 1981 by The Institute of Electrical and Electronics Engineers, Inc.
Resumo:
The problem of achieving super-resolution, i.e. resolution beyond the classical Rayleigh distance of half a wavelength, is a real challenge in several imaging problems. The development of computer-assisted instruments and the possibility of inverting the recorded data has clearly modified the traditional concept of resolving power of an instrument. We show that, in the framework of inverse problem theory, the achievable resolution limit arises no longer from a universal rule but instead from a practical limitation due to noise amplification in the data inversion process. We analyze under what circumstances super-resolution can be achieved and we show how to assess the actual resolution limits in a given experiment, as a function of the noise level and of the available a priori knowledge about the object function. We emphasize the importance of the a priori knowledge of its effective support and we show that significant super-resolution can be achieved for "subwavelength sources", i.e. objects which are smaller than the probing wavelength.
Resumo:
Whereas the resolving power of an ordinary optical microscope is determined by the classical Rayleigh distance, significant super-resolution, i.e. resolution improvement beyond that Rayleigh limit, has been achieved by confocal scanning light microscopy. Furthermore is has been shown that the resolution of a confocal scanning microscope can still be significantly enhanced by measuring, for each scanning position, the full diffraction image by means of an array of detectors and by inverting these data to recover the value of the object at the focus. We discuss the associated inverse problem and show how to generalize the data inversion procedure by allowing, for reconstructing the object at a given point, to make use also of the diffraction images recorded at other scanning positions. This leads us to a whole family of generalized inversion formulae, which contains as special cases some previously known formulae. We also show how these exact inversion formulae can be implemented in practice.
Resumo:
The tomography problem is investigated when the available projections are restricted to a limited angular domain. It is shown that a previous algorithm proposed for extrapolating the data to the missing cone in Fourier space is unstable in the presence of noise because of the ill-posedness of the problem. A regularized algorithm is proposed, which converges to stable solutions. The efficiency of both algorithms is tested by means of numerical simulations. © 1983 Taylor and Francis Group, LLC.
Resumo:
The problem of inverse diffraction from plane to plane is considered in the case where a finite aperture exists in the boundary plane. Singular values and singular functions for the problem are introduced, and the number of degrees of freedom is defined in terms of the distribution of the singular values. Numerical computations are presented for the one-dimensional problem, and it is shown that the effect of evanescent waves disappears at a distance of approximately one wavelength from the boundary plane, even when the dimension of the slit is comparable with the wavelength of the diffracted field. © 1983 Taylor & Francis Group, LLC.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published