3 resultados para Horse stable

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a wide class of cascading gauge theories which usually lead to runaway behaviour in the IR, and discuss possible deformations of the superpotential at the bottom of the cascade which stabilize the runaway direction and provide stable non-supersymmetric vacua. The models we find may allow for a weakly coupled supergravity analysis of dynamical supersymmetric breaking in the context of the gauge/string correspondence. © SISSA 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Anti-Müllerian hormone (AMH), secreted by the granulosa cells of preantral and small antral follicles, has been described as a potential marker of the ovarian reserve. The aim of this prospective study is to investigate the variations of AMH during the menstrual cycle in a young selected population of normo-ovulatory women and to analyse the correlation with other cyclic hormones. Methods: Twenty healthy volunteers from 19 to 35 years old, with regular menstrual cycles (26-31 days), normal ovulation (day 10-16), normal hormonal profile and normal body mass index (18-26 kg/m2) were recruited. AMH, inhibin B, LH, FSH, estradiol and progesterone were measured on days 3, 7, 10, 11, 12, 13, 14, 15, 16, 18, 21 and 25 of a spontaneous cycle. Results: AMH serum levels, either expressed by cycleday or aligned according to the ovulation day, did not show any significant variations during the menstrual cycle. Conclusions: No significant fluctuation of the AMH level during the menstrual cycle was observed. Therefore, this hormone is particularly interesting for clinical evaluation of the ovarian reserve as it may be used at any time during the cycle. © The Author 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many Gram-negative bacteria use the chaperone-usher pathway to express adhesive surface structures, such as fimbriae, in order to mediate attachment to host cells. Periplasmic chaperones are required to shuttle fimbrial subunits or pilins through the periplasmic space in an assembly-competent form. The chaperones cap the hydrophobic surface of the pilins through a donor-strand complementation mechanism. FaeE is the periplasmic chaperone required for the assembly of the F4 fimbriae of enterotoxigenic Escherichia coli. The FaeE crystal structure shows a dimer formed by interaction between the pilin-binding interfaces of the two monomers. Dimerization and tetramerization have been observed previously in crystal structures of fimbrial chaperones and have been suggested to serve as a self-capping mechanism that protects the pilin-interactive surfaces in solution in the absence of the pilins. However, thermodynamic and biochemical data show that FaeE occurs as a stable monomer in solution. Other lines of evidence indicate that self-capping of the pilin-interactive interfaces is not a mechanism that is conservedly applied by all periplasmic chaperones, but is rather a case-specific solution to cap aggregation-prone surfaces.