2 resultados para Green liquid chromatography
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Herbs of the Ericaceae family are commonly found in Algeria and used in traditional medicine as anti- septic, diuretic, astringent, depurative, and to treat scalds and wounds. The methanolic extracts of three species, Arbutus unedo L. (A. unedo, leaves), Erica arborea L. (E. arborea, flowered aerial parts), and Erica multiflora L. (E. multiflora, flowered aerial parts), were compared regarding their content in pheno- lic compounds, their antioxidant, and antibacterial activities. A. unedo harbors the highest content in total phenolics and flavonoids, followed by E. arborea E. multiflora. The contents in total phenolics and flavonoids showed a correlation with the measured antioxidant (hydrogen-donating) activities; this was particularly the case for flavonoids content. The A. unedo extract showed antibacterial activity against all the tested strains (Staphylococcus aureus ATCC 6538, S. aureus C100459, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 9027); however, the E. arborea and E. multiflora extracts showed antibacterial activity only against Gram positive bacteria. Some polyphenols were identified in the three herbs by thin-layer chromatography and high-performance liquid chromatography coupled with diode array and mass spectrometry detection; from these, caffeic acid, p-coumaric acid, naringin, quercetin and kaempferol are reported for the first time in E. multiflora.
Resumo:
We have recently characterized two types of rat 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) isoenzymes expressed in adrenals and gonads. In addition, we have cloned a third type of cDNA encoding a predicted type III 3β-HSD protein specifically expressed in the male rat liver which shares 80% similarity with the two other isoenzymes. Transient expression in human HeLa cells of the cDNAs reveals that the type III 3β-HSD protein does not display oxidative activity for the classical substrates of 3β-HSD, in contrast to the type I 3β-HSD isoenzyme. However, in the presence of NADH, type III isoenzyme, in common with the type I isoform, converts 5α-androstane-3,17-dione (A-dione) and 5α-dihydrotestosterone (DHT) to the corresponding 3β-hydroxysteroids. In fact, the type I and the type III isoenzymes have the same affinity for DHT with K(m) values of 5.05 and 6.16 μM, respectively. When NADPH is used as cofactor, the affinity for DHT of the type III isoform becomes higher than that of the type I isoform with K(m) values of 0.12 and 1.18 μM, respectively. The type III isoform is thus a 3-ketoreductase using NADPH as preferred cofactor which is responsible for the conversion of 3-keto-saturated steroids such as DHT and A-dione into less active steroids.