1 resultado para Fractional-order systems
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Aquatic Commons (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (10)
- Aston University Research Archive (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Boston College Law School, Boston College (BC), United States (1)
- Boston University Digital Common (6)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (26)
- CaltechTHESIS (24)
- Cambridge University Engineering Department Publications Database (28)
- CentAUR: Central Archive University of Reading - UK (80)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (27)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (126)
- Instituto Politécnico do Porto, Portugal (76)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (58)
- Queensland University of Technology - ePrints Archive (223)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório Institucional da Universidade de Aveiro - Portugal (13)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (15)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (12)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (11)
- Université de Montréal, Canada (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (4)
Resumo:
A singular perturbation method is applied to a non-conservative system of two weakly coupled strongly nonlinear non-identical oscillators. For certain parameters, localized solutions exist for which the amplitude of one oscillator is an order of magnitude smaller than the other. It is shown that these solutions are described by coupled equations for the phase difference and scaled amplitudes. Three types of localized solutions are obtained as solutions to these equations which correspond to phase locking, phase drift, and phase entrainment. Quantitative results for the phases and amplitudes of the oscillators and the stability of these phenomena are expressed in terms of the parameters of the model.