7 resultados para Evolution des espèces
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
info:eu-repo/semantics/published
Resumo:
Spatially periodic vegetation patterns are well known in arid and semi-arid regions around the world. Mathematical models have been developed that attribute this phenomenon to a symmetry-breaking instability. Such models are based on the interplay between competitive and facilitative influences that the vegetation exerts on its own dynamics when it is constrained by arid conditions, but evidence for these predictions is still lacking. Moreover, not all models can account for the development of regularly spaced spots of bare ground in the absence of a soil prepattern. We applied Fourier analysis to high-resolution, remotely sensed data taken at either end of a 40-year interval in southern Niger. Statistical comparisons based on this textural characterization gave us broad-scale evidence that the decrease in rainfall over recent decades in the sub-Saharan Sahel has been accompanied by a detectable shift from homogeneous vegetation cover to spotted patterns marked by a spatial frequency of about 20 cycles km-1. Wood cutting and grazing by domestic animals have led to a much more marked transition in unprotected areas than in a protected reserve. Field measurements demonstrated that the dominant spatial frequency was endogenous rather than reflecting the spatial variation of any pre-existing heterogeneity in soil properties. All these results support the use of models that can account for periodic vegetation patterns without invoking substrate heterogeneity or anisotropy, and provide new elements for further developments, refinements and tests. This study underlines the potential of studying vegetation pattern properties for monitoring climatic and human impacts on the extensive fragile areas bordering hot deserts. Explicit consideration of vegetation self-patterning may also improve our understanding of vegetation and climate interactions in arid areas. © 2006 The Authors.
Resumo:
Plastid microsatellite loci developed for Cephalanthera longifolia were used to examine the level of genetic variation within and between populations of the three widespread Cephalanthera species (C. damasonium, C. longifolia and C. rubra). The most detailed sampling was in C. longifolia (42 localities from Ireland to China; 147 individuals). Eight haplotypes were detected. One was detected in the vast majority of individuals and occurred from Ireland to Iran. Three others were only found in Europe (Ireland to Italy, England to Italy and Austria to Croatia). Two were only found in the Middle East and two only in Asia. In C. damasonium, 21 individuals from 10 populations (England to Turkey) were sampled. Only one haplotype was detected. In C. rubra, 34 individuals from eight populations (England to Turkey) were sampled. Although it was not possible to amplify all loci for all samples of this species, nine haplotypes were detected. Short alleles for the trnS-trnG region found in two populations of C. rubra were characterized by sequencing and were caused by deletions of 26 and 30 base pairs. At this level of sampling, it appears that C. rubra shows the greatest genetic variability. Cephalanthera longifolia, C. rubra and C. damasonium have previously been characterized as outbreeding, outbreeding with facultative vegetative reproduction and inbreeding, respectively. Patterns of genetic variation here are discussed in the light of these reproductive system differences. The primers used in these three species of Cephalanthera were also demonstrated to amplify these loci in another five species (C. austiniae, C. calcarata, C. epipactoides, C. falcata and C. yunnanensis). Although it is sometimes treated as a synonym of C. damasonium, the single sample of C. yunnanensis from China had a markedly different haplotype from that found in C. damasonium. All three loci were successfully amplified in two achlorophyllous, myco-heterotrophic species, C. austinae and C. calcarata. © 2010 The Linnean Society of London.
Resumo:
This article documents the addition of 220 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Allanblackia floribunda, Amblyraja radiata, Bactrocera cucurbitae, Brachycaudus helichrysi, Calopogonium mucunoides, Dissodactylus primitivus, Elodea canadensis, Ephydatia fluviatilis, Galapaganus howdenae howdenae, Hoplostethus atlanticus, Ischnura elegans, Larimichthys polyactis, Opheodrys vernalis, Pelteobagrus fulvidraco, Phragmidium violaceum, Pistacia vera, and Thunnus thynnus. These loci were cross-tested on the following species: Allanblackia gabonensis, Allanblackia stanerana, Neoceratitis cyanescens, Dacus ciliatus, Dacus demmerezi, Bactrocera zonata, Ceratitis capitata, Ceratitis rosa, Ceratits catoirii, Dacus punctatifrons, Ephydatia mülleri, Spongilla lacustris, Geodia cydonium, Axinella sp. Ischnura graellsii, Ischnura ramburii, Ischnura pumilio, Pistacia integerrima and Pistacia terebinthus. © 2010 Blackwell Publishing Ltd.
Resumo:
The saddle gall midge, Haplodiplosis marginata (von Roser) (Diptera: Cecidomyiidae), has undergone a resurgence recently as a pest of cereals in Belgium and other European countries. An effective monitoring tool of saddle gall midge flights is needed to understand the enigmatic population dynamics of this pest, and to design an integrated management strategy. Therefore, volatile compounds emitted by females (alkan-2-ols and alk-2-yl butanoates) were identified, and the chirality of the emitted esters was determined to be the R absolute configuration. In field-trapping experiments, racemic non-2-yl butanoate attracted substantial numbers of H.marginata males. Thus, this compound will be useful in baited traps for monitoring seasonal flight patterns, and improving integrated management of the saddle gall midge in agricultural systems.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published