11 resultados para Etiocholanolone -- analogs
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We have recently characterized two types of rat 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) isoenzymes expressed in adrenals and gonads. In addition, we have cloned a third type of cDNA encoding a predicted type III 3β-HSD protein specifically expressed in the male rat liver which shares 80% similarity with the two other isoenzymes. Transient expression in human HeLa cells of the cDNAs reveals that the type III 3β-HSD protein does not display oxidative activity for the classical substrates of 3β-HSD, in contrast to the type I 3β-HSD isoenzyme. However, in the presence of NADH, type III isoenzyme, in common with the type I isoform, converts 5α-androstane-3,17-dione (A-dione) and 5α-dihydrotestosterone (DHT) to the corresponding 3β-hydroxysteroids. In fact, the type I and the type III isoenzymes have the same affinity for DHT with K(m) values of 5.05 and 6.16 μM, respectively. When NADPH is used as cofactor, the affinity for DHT of the type III isoform becomes higher than that of the type I isoform with K(m) values of 0.12 and 1.18 μM, respectively. The type III isoform is thus a 3-ketoreductase using NADPH as preferred cofactor which is responsible for the conversion of 3-keto-saturated steroids such as DHT and A-dione into less active steroids.
Resumo:
info:eu-repo/semantics/published
Resumo:
The aim of this study was to determine the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and potential activity of combined gemcitabine and continuous infusion 5-fluorouracil (5-FU) in metastatic breast cancer (MBC) patients that are resistant to anthracyclines or have been pretreated with both anthracyclines and taxanes. 15 patients with MBC were studied at three European Organization for Research and Treatment of Cancer centres. 13 patients had received both anthracylines and taxanes. Gemcitabine was given intravenously (i.v.) on days 1 and 8, and 5-FU as a continuous i.v. infusion on days 1 through to 14, both drugs given in a 21-day schedule at four different dose levels. Both were given at doses commonly used for the single agents for the last dose level (dose level 4). One of 6 patients at level 4 (gemcitabine 1200 mg/m2 and 5-FU 250 mg/m2/day) had a DLT, a grade 3 stomatitis and skin toxicity. One DLT, a grade 3 transaminase rise and thrombosis, occurred in a patient at level 2 (gemcitabine 1000 mg/m2 and 5-FU 200 mg/m2/day). Thus, the MTD was not reached. One partial response and four disease stabilisations were observed. Only 1 patient withdrew from the treatment due to toxicity. The MTD was not reached in the phase I study. The combination of gemcitabine and 5-FU is well tolerated at doses up to 1200 mg/m2 given on days 1 and 8 and 250 mg/m2/day given on days 1 through to 14, respectively, every 21 days. The clinical benefit rate (responses plus no change of at least 6 months) was 33% with one partial response, suggesting that MBC patients with prior anthracycline and taxane therapy may derive significant benefit from this combination with minimal toxicity.
Resumo:
In breast cancer, chemotherapy regimens that include infusional 5-fluorouracil (5-FU) lead to high response rates, but require central venous access and pumps. To avoid these inconveniences, we substituted infusional 5-FU with capecitabine. The main objective of this study was to determine the maximum tolerated dose (MTD) of capecitabine when given in combination with fixed doses of epirubicin and cyclophosphamide (100 and 600 mg/m(2) day 1 every (q) 3 weeks) as primary treatment for large operable or locally advanced/inflammatory breast cancer without distant metastasis. Capecitabine was escalated from 750 mg/m(2) twice a day (bid) to 1250 mg/m(2) bid from day 1 to day 14 in four dose levels. Dose escalation was permitted if 0/3 or 1/6 patients experienced dose-limiting toxicity (DLT). A total of 23 patients were included and 117 courses were administered. At dose level 4, 2 of 2 patients presented DLTs defining the MTD. A high rate of capecitabine treatment modification was required with capecitabine 1050 mg/m(2) bid (dose level 3). 19 patients achieved an objective response (83%). In conclusion, we believe that capecitabine 900 mg/m(2) bid (dose level 2) is the recommended dose in combination with epirubicin 100 mg/m(2) and cyclophosphamide 600 mg/m(2). The acceptable toxicity profile and encouraging activity of this regimen warrant further evaluation.
Resumo:
BACKGROUND AND PURPOSE: Docetaxel is an active agent in the treatment of metastatic breast cancer. We evaluated the feasibility of docetaxel-based sequential and combination regimens as adjuvant therapies for patients with node-positive breast cancer. PATIENTS AND METHODS: Three consecutive groups of patients with node-positive breast cancer or locally-advanced disease, aged < or = 70 years, received one of the following regimens: a) sequential A-->T-->CMF: doxorubicin 75 mg/m2 q 3 weeks x 3, followed by docetaxel 100 mg/m2 q 3 weeks x 3, followed by i.v. CMF days 1 + 8 q 4 weeks x 3; b) sequential accelerated A-->T-->CMF: A and T were administered at the same doses q 2 weeks; c) combination therapy: doxorubicin 50 mg/m2 + docetaxel 75 mg/m2 q 3 weeks x 4, followed by CMF x 4. When indicated, radiotherapy was administered during or after CMF, and tamoxifen started after the end of CMF. RESULTS: Seventy-nine patients have been treated. Median age was 48 years. A 30% rate of early treatment discontinuation was observed in patients receiving the sequential accelerated therapy (23% during A-->T), due principally to severe skin toxicity. Median relative dose-intensity was 100% in the three treatment arms. The incidence of G3-G4 major toxicities by treated patients, was as follows: skin toxicity a: 5%; b: 27%; c: 0%; stomatitis a: 20%; b: 20%; c: 3%. The incidence of neutropenic fever was a: 30%; b: 13%; c: 48%. After a median follow-up of 18 months, no late toxicity has been reported. CONCLUSIONS: The accelerated sequential A-->T-->CMF treatment is not feasible due to an excess of skin toxicity. The sequential non accelerated and the combination regimens are feasible and under evaluation in a phase III trial of adjuvant therapy.
Resumo:
BACKGROUND: Docetaxel has proven efficacy in metastatic breast cancer. In this pilot study, we explored the efficacy/feasibility of docetaxel-based sequential and combination regimens as adjuvant therapy of node-positive breast cancer. PATIENTS AND METHODS: From March 1996 till March 1998, four consecutive groups of patients with stages II and III breast cancer, aged < or = 70 years, received one of the following regimens: a) sequential Doxorubicin (A) --> Docetaxel (T) --> CMF (Cyclophosphamide+Methotrexate+5-Fluorouracil): A 75 mg/m q 3 wks x 3, followed by T100 mg/m2 q 3 wks x 3, followed by i.v. CMF Days 1+8 q 4 wks x 3; b) sequential accelerated A --> T --> CMF: A and T administered at the same doses q 2 wks with Lenograstin support; c) combination therapy: A 50 mg/m2 + T 75 mg/m2 q 3 wks x 4, followed by CMF x 4; d) sequential T --> A --> CMF: T and A, administered as in group a), with the reverse sequence. When indicated, radiotherapy was administered during or after CMF, and Tamoxifen after CMF. RESULTS: Ninety-three patients were treated. The median age was 48 years (29-66) and the median number of positive axillary nodes was 6 (1-25). Tumors were operable in 94% and locally advanced in 6% of cases. Pathological tumor size was >2 cm in 72% of cases. There were 21 relapses, (18 systemic, 3 locoregional) and 11 patients (12%) have died from disease progression. At median follow-up of 39 months (6-57), overall survival (OS) was 87% (95% CI, 79-94%) and disease-free survival (DFS) was 76% (95% CI, 67%-85%). CONCLUSION: The efficacy of these docetaxel-based regimens, in terms of OS and DFS, appears to be at least as good as standard anthracycline-based adjuvant chemotherapy (CT), in similar high-risk patient populations.
Resumo:
Erm, a member of the PEA3 group within the Ets family of transcription factors, is expressed in murine and human lymphocytes. Here, we show that in the human Molt4 lymphoblastic cell line, the erm gene expression is regulated by the conventional PKC (cPKC) pathway. To better characterize the molecular mechanism by which cPKC regulates Erm transcription in Molt4 cells, we tested proximal promoter deletions of the human gene, and identified a specific cPKC-regulated region between positions -420 and -115 upstream of the first exon.
Resumo:
Complementary DNA encoding human 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (30-HSD) has been expressed in transfected GH4C1 with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of [3H]-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3β-HSD, the present study shows that 4MA (N,N-diethyl-4-rnethyl-3-oxo-4-aza-5α-androstane-17β-carboxamide) and its analogues inhibit DHEA oxidation competitively while they exert a noncompetitive inhibition of the isomerization of 5-androstenedione to 4-androstenedione with an approximately 1000-fold higher Ki value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3β-HSD protein. In addition, using 5α-dihydrotestosterone (DHT) and 5α-androstane-3β,17β-diol as substrates for dehydrogenase activity only, we have found that dehydrogenase activity is reversibly and competitively inhibited by 4MA. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration. © 1991 American Chemical Society.
Resumo:
The most potent steroid in human prostatic carcinoma LNCaP cells, i.e. dihydrotestosterone (DHT), has a biphasic stimulatory effect on cell proliferation. At the maximal stimulatory concentration of 0.1 nM DHT, analysis of cell kinetic parameters shows a decrease of the G0-G1 fraction with a corresponding increase of the S and G2 + M fractions. In contrast, concentrations of 1 nM DHT or higher induce a return of cell proliferation to control levels, reflected by an increase in the G0-G1 fraction at the expense of the S and especially the G2 + M fractions. Continuous labeling for 144 h with the nucleotide analogue 5'-bromodeoxyuridine shows that the percentage of cycling LNCaP cells rises more than 90% after treatment with stimulatory concentrations of DHT, whereas in control cells as well as in cells treated with high concentrations of the androgen, this value remains below 50%. Although LNCaP cells do not contain detectable estrogen receptors, the new pure steroidal antiestrogen EM-139 not only reversed the stimulation of cell proliferation and cell kinetics induced by stimulatory doses of DHT but also inhibited basal cell proliferation.
Resumo:
BACKGROUND. Laboratory data suggest that insulin-like growth factor-1 (IGE-1) may stimulate the growth of different human tumors. At least in acromegalic patients, somatostatin (SMS) analogs, such as lanreotide, suppress the serum levels of growth hormone (GH) and IGE-1. METHODS. To evaluate the tolerability and biologic activity of different doses of lanreotide in patients with advanced colorectal carcinoma, consecutive groups of 3 patients each were subcutaneous treated with lanreotide at doses of 1, 2, 3, 4, 5, or 6 mg three times a day for 2 months. In the event of Grade 3 side effects, 3 additional patients were treated with the same dose before the next dose escalation. Serum samples were obtained on Days 0, 15, 30, and 60 for serum GH, IGF-1, and lanreotide assessment. RESULTS. Twenty-four patients were enrolled and all were evaluable. Except for the 3 and 6 mg doses, for which the observation of a Grade 3 side effect required that an additional three patients be treated, it was sufficient to treat 3 patients at each dose. The overall incidence of side effects was as follows: changes in bowel habits, 83%; abdominal cramps, 79%; diarrhea, 17%; vomiting, 17%; nausea, 21%; steatorrhea, 78%; hyperglycemia, 35%; laboratory hypothyroidism, 39%; gallstones, 13%; and weight loss, 17%. No evidence of an increase in the incidence, intensity, or duration of side effects was observed with dose escalation. Serum IGF-1 levels were as follows: Day 13: 63%, 60%, and 67% of the baseline values for the low (12 mg), intermediate (3-4 mg), and high (5- 6 mg) dose groups, respectively; Day 30: 63%, 59%, and 51%, respectively; and Day 60: 73%, 69%, and 47%, respectively. Serum lanreotide levels declined during treatment in all of the dose groups (90 ng/mL on Day 15, and 35 ng/mL on Day 60 for the 5-6 mg group; 10 ng/mL on Day 15, and 1.5 ng/mL on Day 60 for the 1-2 mg group). No antitumor activity or tumor marker reduction was observed. CONCLUSIONS. No increase in toxicity was observed when subcutaneous lanreotide doses were escalated to 6 mg three times a day for 2 months. The highest doses seemed to maintain reduced serum IGF-1 levels; with the lowest doses, a 'rebound' in serum IGF-1 levels was observed during treatment. Nevertheless, intermittent subcutaneous injections do not ensure constant serum drug concentrations over time.
Resumo:
In the last years, thanks to the improvement in the prognosis of cancer patients, a growing attention has been given to the fertility issues. International guidelines on fertility preservation in cancer patients recommend that physicians discuss, as early as possible, with all patients of reproductive age their risk of infertility from the disease and/or treatment and their interest in having children after cancer, and help with informed fertility preservation decisions. As recommended by the American Society of Clinical Oncology and the European Society for Medical Oncology, sperm cryopreservation and embryo/oocyte cryopreservation are standard strategies for fertility preservations in male and female patients, respectively; other strategies (e.g. pharmacological protection of the gonads and gonadal tissue cryopreservation) are considered experimental techniques. However, since then, new data have become available, and several issues in this field are still controversial and should be addressed by both patients and their treating physicians. In April 2015, physicians with expertise in the field of fertility preservation in cancer patients from several European countries were invited in Genova (Italy) to participate in a workshop on the topic of "cancer and fertility preservation". A total of ten controversial issues were discussed at the conference. Experts were asked to present an up-to-date review of the literature published on these topics and the presentation of own unpublished data was encouraged. On the basis of the data presented, as well as the expertise of the invited speakers, a total of ten recommendations were discussed and prepared with the aim to help physicians in counseling their young patients interested in fertility preservation. Although there is a great interest in this field, due to the lack of large prospective cohort studies and randomized trials on these topics, the level of evidence is not higher than 3 for most of the recommendations highlighting the need of further research efforts in many areas of this field. The participation to the ongoing registries and prospective studies is crucial to acquire more robust information in order to provide evidence-based recommendations.