3 resultados para Estrogen Receptor beta
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We have recently demonstrated that physiological levels of androgens exert direct and potent inhibitory effects on the growth of human breast cancer ZR-75-1 cells in vivo in nude mice as well as in vitro under both basal and estrogen-stimulated conditions. The inhibitory effect of androgens has also been confirmed on the growth of dimethylbenz(a)anthracene (DMBA)-induced mammary carcinoma in the rat. Such observations are in close agreement with the clinical data showing that androgens and the androgenic compound medroxyprogesterone acetate (MPA) have beneficial effects in breast cancer in women comparable to other endocrine therapies, including tamoxifen. Although the inhibitory action of androgens on cell proliferation in estrogen-induced ZR-75-1 cells results, in part, from their suppressive effect on expression of the estrogen receptor, the androgens also exert a direct inhibitory effect independent of estrogens. Androgens cause a global slowing effect on the duration of the cell cycle. These observations support clinical data showing that androgenic compounds induce an objective remission after failure of antiestrogen therapy as well as those indicating that the antiproliferative action of androgens is additive to that of antiestrogens. We have also recently demonstrated in ZR-75-1 human breast cancer cells the antagonism between androgens and estrogens on the expression of GCDFP-15 and GCDFP-24 which are two major proteins secreted in human gross cystic disease fluid. The effects of androgens and estrogens as well as those of progestins and glucocorticoids on GCDFP-15 and GCDFP-24 mRNA levels and secretion are opposite to those induced by the same steroids on cell growth in ZR-75-1 cells.
Resumo:
Triple negative breast cancers (TNBC) are often described as biologically aggressive tumors, with poorer survival compared to other breast cancer subtypes. The fact that TNBC lacks an obvious target like estrogen receptor and HER2 represents a major challenge in the management of these patients. Genomic analyses have revealed that TNBC comprises a diverse group of cancers, which have distinct molecular profiles and different prognosis. These studies also highlighted molecular aberrations that could serve as potential treatment targets. On the other hand, a high percentage of TNBCs express some important surface receptors that have been already exploited in the development of promising targeted therapies, which are currently tested in clinical trials. In this review, we will provide an overview on the molecular diversity of TNBC with special emphasis on the evolving role of some potential biomarkers that may be utilized in the near future.
Resumo:
Previously, we and others have shown that MHC class-II deficient humans have greatly reduced numbers of CD4+CD8- peripheral T cells. These type-III Bare Lymphocyte Syndrome patients lack MHC class-II and have an impaired MHC class-I antigen expression. In this study, we analyzed the impact of the MHC class-II deficient environment on the TCR V-gene segment usage in this reduced CD4+CD8- T-cell subset. For these studies, we employed TcR V-region-specific monoclonal antibodies (mAbs) and a semiquantitative PCR technique with V alpha and V beta amplimers, specific for each of the most known V alpha- and V beta-gene region families. The results of our studies demonstrate that some of the V alpha-gene segments are used less frequent in the CD4+CD8- T-cell subset of the patient, whereas the majority of the TCR V alpha- and V beta-gene segments investigated were used with similar frequencies in both subsets in the type-III Bare Lymphocyte Syndrome patient compared to healthy control family members. Interestingly, the frequency of TcR V alpha 12 transcripts was greatly diminished in the patient, both in the CD4+CD8- as well as in the CD4-CD8+ compartment, whereas this gene segment could easily be detected in the healthy family controls. On the basis of the results obtained in this study, it is concluded that within the reduced CD4+CD8- T-cell subset of this patient, most of the TCR V-gene segments tested for are employed. However, a skewing in the usage frequency of some of the V alpha-gene segments toward the CD4-CD8+ T-cell subset was noticeable in the MHC class-II deficient patient that differed from those observed in the healthy family controls.