5 resultados para Enzymatic transesterification

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The use of mechanical and enzymatic techniques to isolate preantral follicles before in-vitro culture has been previously described. The aim of this study was to assess the effect of the isolation procedure of mouse preantral follicles on their subsequent development in vitro. Methods: Follicles were isolated either mechanically or enzymatically and cultured using an individual non-spherical culture system. Follicular development and steroidogenesis, oocyte in-vitro maturation and embryo development were assessed for both groups. Results: After 12 days of culture, follicles isolated mechanically had a higher survival rate but a lower antral-like cavity formation rate than follicles isolated enzymatically. Enzymatic follicle isolation was associated with a higher production of testosterone and estradiol compared with mechanical isolation. A stronger phosphatase alkaline reaction was observed after enzymatic isolation, suggesting that follicles isolated enzymatically had more theca cells than those isolated mechanically. However, both isolation techniques resulted in similar oocyte maturation and embryo development rates. Conclusions: Enzymatic follicular isolation did not affect theca cell development. Follicular steroidogenesis was enhanced after enzymatic isolation but the developmental capacity of oocytes was comparable to that obtained after mechanical isolation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 1968, bone marrow transplantation became the first line therapy for selected metabolic and immunological hereditary disorders. Actually, advances in the supportive care in bone marrow transplantation and a better knowledge of the immunology of BMT complications has been associated with a better disease correction and an increase in long term survival. New approaches are under investigation and include: hematopoietic growth factors, enzymatic replacement and gene therapy. However at the present time BMT is still the only curative treatment for selected hereditary disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective - To evaluate the effect of in vitro culture on zona pellucida resistance in mouse oocytes and embryos. Method-Zona pellucida resistance was assessed by comparing duration of zona lysis in the presence of alpha- chymotrypsin. The effects of artificial or physiological conditions of development were evaluated by comparing embryos in vitro with those left to reach the same stage of development in vivo. Results - The time required for zona lysis of oocytes increased after 2, 9.4, and 48 hours in vitro (P < .001). The same observation holds true for oocytes left in vivo during 24 hours. Fertilization both in vivo and in vitro induced a major increase in zona resistance. At the two-cell stage, in vitro culture did not harden the zona pellucida. At the morula stage and beyond, enzymatic lysis was slightly longer in vitro as compared to that of similar stages recovered from the genital tract. Conclusions - Our data indicate that in vitro culture conditions do not modify zona hardening in oocytes and only slightly increased zona resistance from the morula stage on.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complementary DNA encoding human 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (30-HSD) has been expressed in transfected GH4C1 with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of [3H]-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3β-HSD, the present study shows that 4MA (N,N-diethyl-4-rnethyl-3-oxo-4-aza-5α-androstane-17β-carboxamide) and its analogues inhibit DHEA oxidation competitively while they exert a noncompetitive inhibition of the isomerization of 5-androstenedione to 4-androstenedione with an approximately 1000-fold higher Ki value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3β-HSD protein. In addition, using 5α-dihydrotestosterone (DHT) and 5α-androstane-3β,17β-diol as substrates for dehydrogenase activity only, we have found that dehydrogenase activity is reversibly and competitively inhibited by 4MA. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration. © 1991 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transient expression in nonsteroidogenic mammalian cells of the rat wild type I and type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β- HSD) cDNAs shows that the encoded proteins, in addition to being able to catalyze the oxidation and isomerization of Δ5-3β-hydroxysteroid precursors into the corresponding Δ4-3-ketosteroids, interconvert 5α- dihydrotestosterone (DHT) and 5α-androstane-3β,17β-diol (3β-diol). When homogenate from cells transfected with a plasmid vector containing type I 3β-HSD is incubated in the presence of DHT using NAD+ as cofactor, a somewhat unexpected metabolite is formed, namely 5α-androstanedione (A- dione), thus indicating an intrinsic androgenic 17β-hydroxysteroid dehydrogenase (17β-HSD) activity of this 3β-HSD isoform. Although the relative Vmax of 17β-HSD activity is 14.9-fold lower than that of 3β-HSD activity, the Km value for the 17β-HSD activity of type I 3β-HSD is 7.97 μM, a value which is in the same range as the conversion of DHT into 3β- diol which shows a Km value of 4.02 μM. Interestingly, this 17β-HSD activity is highly predominant in unbroken cells in culture, thus supporting the physiological relevance of this 'secondary' activity. Such 17β-HSD activity is inhibited by the classical substrates of 3β-HSD, namely pregnenolone (PREG), dehydroepiandrosterone (DHEA), Δ5-androstene-3β,17β- diol (Δ5-diol), 5α-androstane-3β,17β-diol (3β-diol) and DHT, with IC50 values of 2.7, 1.0, 3.2, 6.2, and 6.3 μM, respectively. Although dual enzymatic activities have been previously reported for purified preparations of other steroidogenic enzymes, the present data demonstrate the multifunctional enzymatic activities associated with a recombinant oxidoreductase enzyme. In addition to its well known 3β-HSD activity, this enzyme possesses the ability to catalyze DHT into A-dione thus potentially controlling the level of the active androgen DHT in classical steroidogenic as well as peripheral intracrine tissues.