2 resultados para Embryos

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective - To evaluate the effect of in vitro culture on zona pellucida resistance in mouse oocytes and embryos. Method-Zona pellucida resistance was assessed by comparing duration of zona lysis in the presence of alpha- chymotrypsin. The effects of artificial or physiological conditions of development were evaluated by comparing embryos in vitro with those left to reach the same stage of development in vivo. Results - The time required for zona lysis of oocytes increased after 2, 9.4, and 48 hours in vitro (P < .001). The same observation holds true for oocytes left in vivo during 24 hours. Fertilization both in vivo and in vitro induced a major increase in zona resistance. At the two-cell stage, in vitro culture did not harden the zona pellucida. At the morula stage and beyond, enzymatic lysis was slightly longer in vitro as compared to that of similar stages recovered from the genital tract. Conclusions - Our data indicate that in vitro culture conditions do not modify zona hardening in oocytes and only slightly increased zona resistance from the morula stage on.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After becoming competent for resuming meiosis, fully developed mammalian oocytes are maintained arrested in prophase I until ovulation is triggered by the luteotropin surge. Meiotic pause has been shown to depend critically on maintenance of cAMP level in the oocyte and was recently attributed to the constitutive Gs (the heterotrimeric GTP-binding protein that activates adenylyl cyclase) signaling activity of the G protein-coupled receptor GPR3. Here we show that mice deficient for Gpr3 are unexpectedly fertile but display progressive reduction in litter size despite stable age-independent alteration of meiotic pause. Detailed analysis of the phenotype confirms premature resumption of meiosis, in vivo, in about one-third of antral follicles from Gpr3-/- females, independently of their age. In contrast, in aging mice, absence of GPR3 leads to severe reduction of fertility, which manifests by production of an increasing number of nondeveloping early embryos upon spontaneous ovulation and massive amounts of fragmented oocytes after superovulation. Severe worsening of the phenotype in older animals points to an additional role of GPR3 related to protection (or rescue) of oocytes from aging. Gpr3-defective mice may constitute a relevant model of premature ovarian failure due to early oocyte aging.