10 resultados para Dispersed Generation
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The immobilisation of molybdate on Mg,Al-LDH leads to an active, heterogeneous catalyst that generates singlet molecular oxygen from hydrogen peroxide in the absence of soluble base
Resumo:
Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear indexguiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources. © 2002 Optical Society of America.
Resumo:
The generation of a spatially single-mode white-light supercontinuum has been observed in a photonic crystal fiber pumped with 60-ps pulses of subkilowatt peak power. The spectral broadening is identified as being due to the combined action of stimulated Raman scattering and parametric four-wave-mixing generation, with a negligible contribution from the self-phase modulation of the pump pulses. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate that ultrafast femtosecond pulses are not needed for efficient supercontinuum generation in photonic crystal fibers. © 2001 Optical Society of America.
Resumo:
We study the generation of supercontinua in air-silica microstructured fibers by both nanosecond and femtosecond pulse excitation. In the nanosecond experiments, a 300-nm broadband visible continuum was generated in a 1.8-m length of fiber pumped at 532 nm by 0.8-ns pulses from a frequency-doubled passively Q-switched Nd:YAG microchip laser. At this wavelength, the dominant mode excited under the conditions of continuum generation is the LP 11 mode, and, with nanosecond pumping, self-phase modulation is negligible and the continuum generation is dominated by the interplay of Raman and parametric effects. The spectral extent of the continuum is well explained by calculations of the parametric gain curves for four-wave mixing about the zero-dispersion wavelength of the LP11 mode. In the femtosecond experiments, an 800-nm broad-band visible and near-infrared continuum has been generated in a 1-m length of fiber pumped at 780 nm by 100-fs pulses from a Kerr-lens model-locked Ti:sapphire laser. At this wavelength, excitation and continuum generation occur in the LP01 mode, and the spectral width of the observed continuum is shown to be consistent with the phase-matching bandwidth for parametric processes calculated for this fiber mode. In addition, numerical simulations based on an extended nonlinear Schrödinger equation were used to model supercontinuum generation in the femtosecond regime, with the simulation results reproducing the major features of the experimentally observed spectrum. © 2002 Optical Society of America.
Resumo:
The compression properties of octave-spanning supercontinuum spectra generated in photonic crystal fibers are studied using stochastic nonlinear Schrödinger equation simulations. The conditions under which sub-5 fs pulses can be obtained after compression are identified. © 2004 Optical Society of America.
Resumo:
Numerical simulations have been used to study broad-band supercontinuum generation in optical fibers with dispersion and nonlinearity characteristics typical and photonic crystal or tapered fibers structures. The simulations include optical shock and Raman nonlinearity terms, with quantum noise taken into account phenomenologically by including in the input field a noise seed of one photon per mode with random phase. For input pulses of 150-fs duration injected in the anomalous dispersion regime, the effect of modulational instability is shown to lead to severe temporal jitter in the output, and associated fluctuations in the spectral amplitude and phase across the generated supercontinuum. The spectral phase fluctuations are quantified by performing multiple simulations and calculating both the standard deviation of the phase and, more rigorously, the degree of first-order coherence as a function of wavelength across the spectrum. By performing simulations over a range of input pulse durations and wavelengths, we can identify the conditions under which coherent supercontinua with a well-defined spectral phase are generated.
Resumo:
Numerical simulations are used to study the temporal and spectral characteristics of broadband supercontinua generated in photonic crystal fiber. In particular, the simulations are used to follow the evolution with propagation distance of the temporal intensity, the spectrum, and the cross-correlation frequency resolved optical gating (XFROG) trace. The simulations allow several important physical processes responsible for supercontinuum generation to be identified and, moreover, illustrate how the XFROG trace provides an intuitive means of interpreting correlated temporal and spectral features of the supercontinuum. Good qualitative agreement with preliminary XFROG measurements is observed. © 2002 Optical Society of America.
Resumo:
Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50% for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schrödinger equation, finding good quantitative agreement over a range of input-pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input-pulse shot noise and the spontaneous Raman scattering down the fiber.
Resumo:
Thanks to a passive cavity configuration, modulational instability in fibers is successfully observed, for the first time to our knowledge, in the continuous-wave regime. Our technique provides a new means of generating all-optically ultrahigh-repetition-rate pulse trains and opens up new possibilities for the fundamental study of modulational instability and related phenomena. © 2001 Optical Society of America.
Resumo:
info:eu-repo/semantics/published