3 resultados para Crucero 6708
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Duality is investigated for higher spin (s ≥ 2), free, massless, bosonic gauge fields. We show how the dual formulations can be derived from a common "parent", first-order action. This goes beyond most of the previous treatments where higher-spin duality was investigated at the level of the equations of motion only. In D = 4 spacetime dimensions, the dual theories turn out to be described by the same Pauli-Fierz (s = 2) or Fronsdal (s ≥ 3) action (as it is the case for spin 1). In the particular s = 2 D = 5 case, the Pauli-Fierz action and the Curtright action are shown to be related through duality. A crucial ingredient of the analysis is given by the first-order, gauge-like, reformulation of higher spin theories due to Vasiliev. © SISSA/ISAS 2003.
Resumo:
We consider a wide class of cascading gauge theories which usually lead to runaway behaviour in the IR, and discuss possible deformations of the superpotential at the bottom of the cascade which stabilize the runaway direction and provide stable non-supersymmetric vacua. The models we find may allow for a weakly coupled supergravity analysis of dynamical supersymmetric breaking in the context of the gauge/string correspondence. © SISSA 2006.
Resumo:
We study the problem of consistent interactions for spin-3 gauge fields in flat spacetime of arbitrary dimension 3$">n>3. Under the sole assumptions of Poincaré and parity invariance, local and perturbative deformation of the free theory, we determine all nontrivial consistent deformations of the abelian gauge algebra and classify the corresponding deformations of the quadratic action, at first order in the deformation parameter. We prove that all such vertices are cubic, contain a total of either three or five derivatives and are uniquely characterized by a rank-three constant tensor (an internal algebra structure constant). The covariant cubic vertex containing three derivatives is the vertex discovered by Berends, Burgers and van Dam, which however leads to inconsistencies at second order in the deformation parameter. In dimensions 4$">n>4 and for a completely antisymmetric structure constant tensor, another covariant cubic vertex exists, which contains five derivatives and passes the consistency test where the previous vertex failed. © SISSA 2006.