3 resultados para Continuous Ambulatory Peritoneal Dialysis
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The aim of this study was to determine the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and potential activity of combined gemcitabine and continuous infusion 5-fluorouracil (5-FU) in metastatic breast cancer (MBC) patients that are resistant to anthracyclines or have been pretreated with both anthracyclines and taxanes. 15 patients with MBC were studied at three European Organization for Research and Treatment of Cancer centres. 13 patients had received both anthracylines and taxanes. Gemcitabine was given intravenously (i.v.) on days 1 and 8, and 5-FU as a continuous i.v. infusion on days 1 through to 14, both drugs given in a 21-day schedule at four different dose levels. Both were given at doses commonly used for the single agents for the last dose level (dose level 4). One of 6 patients at level 4 (gemcitabine 1200 mg/m2 and 5-FU 250 mg/m2/day) had a DLT, a grade 3 stomatitis and skin toxicity. One DLT, a grade 3 transaminase rise and thrombosis, occurred in a patient at level 2 (gemcitabine 1000 mg/m2 and 5-FU 200 mg/m2/day). Thus, the MTD was not reached. One partial response and four disease stabilisations were observed. Only 1 patient withdrew from the treatment due to toxicity. The MTD was not reached in the phase I study. The combination of gemcitabine and 5-FU is well tolerated at doses up to 1200 mg/m2 given on days 1 and 8 and 250 mg/m2/day given on days 1 through to 14, respectively, every 21 days. The clinical benefit rate (responses plus no change of at least 6 months) was 33% with one partial response, suggesting that MBC patients with prior anthracycline and taxane therapy may derive significant benefit from this combination with minimal toxicity.
Resumo:
post-deadline paper
Resumo:
Thanks to a passive cavity configuration, modulational instability in fibers is successfully observed, for the first time to our knowledge, in the continuous-wave regime. Our technique provides a new means of generating all-optically ultrahigh-repetition-rate pulse trains and opens up new possibilities for the fundamental study of modulational instability and related phenomena. © 2001 Optical Society of America.