3 resultados para Computer-assisted
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The authors analyzed several cytomorphonuclear parameters related to chromatin distribution and DNA ploidy in typical and atypical carcinoids and in small cell lung cancers. Nuclear measurements and analysis were performed with a SAMBA 200 (TITN, Grenoble, France) cell image processor with software allowing the discrimination of parameters computed on cytospin preparations of Feulgen-stained nuclei extracted from deparaffinized tumor tissues. The authors' results indicate a significant increase in DNA content--assessed by integrated optical density (IOD)--from typical carcinoids to small cell lung carcinomas, with atypical carcinoids showing an intermediate value. Parameters related to hyperchromatism (short and long run length and variance of optical density) also characterize the atypical carcinoids as being intermediate between typical carcinoids and small cell lung cancers. The systematic measurement of these cytomorphonuclear parameters seems to define an objective, reproducible "scale" of differentiation that helps to define the atypical carcinoid and may be of value in establishing cytologic criteria for differential diagnosis.
Resumo:
The problem of achieving super-resolution, i.e. resolution beyond the classical Rayleigh distance of half a wavelength, is a real challenge in several imaging problems. The development of computer-assisted instruments and the possibility of inverting the recorded data has clearly modified the traditional concept of resolving power of an instrument. We show that, in the framework of inverse problem theory, the achievable resolution limit arises no longer from a universal rule but instead from a practical limitation due to noise amplification in the data inversion process. We analyze under what circumstances super-resolution can be achieved and we show how to assess the actual resolution limits in a given experiment, as a function of the noise level and of the available a priori knowledge about the object function. We emphasize the importance of the a priori knowledge of its effective support and we show that significant super-resolution can be achieved for "subwavelength sources", i.e. objects which are smaller than the probing wavelength.
Resumo:
Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low-dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low-dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and a quality assurance plan. The establishment of a central registry, including a biobank and an image bank, and preferably on a European level, is strongly encouraged. Key points: • Lung cancer screening using low dose computed tomography reduces mortality. • Leading US medical societies recommend large scale screening for high-risk individuals. • There are no lung cancer screening recommendations or reimbursed screening programmes in Europe as of yet. • The European Society of Radiology and the European Respiratory Society recommend lung cancer screening within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. • High risk, eligible individuals should be enrolled in comprehensive, quality-controlled longitudinal programmes.