3 resultados para Center of Rotation

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In spectra of jet-cooled C2H2 recorded with an FTIR spectrometer, the ν5, ν4 + ν5, ν3 and ν2 + ν4 + ν5 bands all exhibit an intensity distribution corresponding to ∼6 K for rotation, with no evidence of nuclear spin conversion. Spectra of C2H2 isolated in solid p-H2 show no evidence of rotation of C2H2. The strong interaction between ν3 and ν2 + ν4 + ν5 in the gas phase is diminished in solid p-H2. Lines associated with dimer, trimer and tetramer of C2H2 are identified. Spectral features characteristic of solid state acetylene are observed under jet-cooled conditions. © 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water-rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500 mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T≃300°C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic end member is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160 m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accurate ab initio intermolecular potential energy surfaces (IPES) have been obtained for the first time for the ground electronic state of the C 2H2-Kr and C2H2-Xe van der Waals complexes. Extensive tests, including complete basis set and all-electron scalar relativistic results, support their calculation at the CCSD(T) level of theory, using small-core relativistic pseudopotentials for the rare-gas atoms and aug-cc-pVQZ basis sets extended with a set of 3s3p2d1f1g mid-bond functions. All results are corrected for the basis set superposition error. The importance of the scalar relativistic and rare-gas outer-core (n.1)d correlation effects is investigated. The calculated IPES, adjusted to analytical functions, are characterized by global minima corresponding to skew T-shaped geometries, in which the Jacobi vector positioning the rare-gas atom with respect to the center of mass of the C2H2 moiety corresponds to distances of 4.064 and 4.229Å, and angles of 65.22° and 68.67° for C 2H2-Kr and C2H2-Xe, respectively. The interaction energy of both complexes is estimated to be -151.88 (1.817 kJ mol-1) and -182.76 cm-1 (2.186 kJ mol-1), respectively. The evolution of the topology of the IPES as a function of the rare-gas atom, from He to Xe, is also discussed. © 2012 Taylor and Francis.