2 resultados para CONVEX HYPERSURFACES
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The study of real hypersurfaces in pseudo-Riemannian complex space forms and para-complex space forms, which are the pseudo-Riemannian generalizations of the complex space forms, is addressed. It is proved that there are no umbilic hypersurfaces, nor real hypersurfaces with parallel shape operator in such spaces. Denoting by J be the complex or para-complex structure of a pseudo-complex or para-complex space form respectively, a non-degenerate hypersurface of such space with unit normal vector field N is said to be Hopf if the tangent vector field JN is a principal direction. It is proved that if a hypersurface is Hopf, then the corresponding principal curvature (the Hopf curvature) is constant. It is also observed that in some cases a Hopf hypersurface must be, locally, a tube over a complex (or para-complex) submanifold, thus generalizing previous results of Cecil, Ryan and Montiel.
Resumo:
We revisit the well-known problem of sorting under partial information: sort a finite set given the outcomes of comparisons between some pairs of elements. The input is a partially ordered set P, and solving the problem amounts to discovering an unknown linear extension of P, using pairwise comparisons. The information-theoretic lower bound on the number of comparisons needed in the worst case is log e(P), the binary logarithm of the number of linear extensions of P. In a breakthrough paper, Jeff Kahn and Jeong Han Kim (STOC 1992) showed that there exists a polynomial-time algorithm for the problem achieving this bound up to a constant factor. Their algorithm invokes the ellipsoid algorithm at each iteration for determining the next comparison, making it impractical. We develop efficient algorithms for sorting under partial information. Like Kahn and Kim, our approach relies on graph entropy. However, our algorithms differ in essential ways from theirs. Rather than resorting to convex programming for computing the entropy, we approximate the entropy, or make sure it is computed only once in a restricted class of graphs, permitting the use of a simpler algorithm. Specifically, we present: an O(n2) algorithm performing O(log n·log e(P)) comparisons; an O(n2.5) algorithm performing at most (1+ε) log e(P) + Oε(n) comparisons; an O(n2.5) algorithm performing O(log e(P)) comparisons. All our algorithms are simple to implement. © 2010 ACM.