2 resultados para CONVEX

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We revisit the well-known problem of sorting under partial information: sort a finite set given the outcomes of comparisons between some pairs of elements. The input is a partially ordered set P, and solving the problem amounts to discovering an unknown linear extension of P, using pairwise comparisons. The information-theoretic lower bound on the number of comparisons needed in the worst case is log e(P), the binary logarithm of the number of linear extensions of P. In a breakthrough paper, Jeff Kahn and Jeong Han Kim (STOC 1992) showed that there exists a polynomial-time algorithm for the problem achieving this bound up to a constant factor. Their algorithm invokes the ellipsoid algorithm at each iteration for determining the next comparison, making it impractical. We develop efficient algorithms for sorting under partial information. Like Kahn and Kim, our approach relies on graph entropy. However, our algorithms differ in essential ways from theirs. Rather than resorting to convex programming for computing the entropy, we approximate the entropy, or make sure it is computed only once in a restricted class of graphs, permitting the use of a simpler algorithm. Specifically, we present: an O(n2) algorithm performing O(log n·log e(P)) comparisons; an O(n2.5) algorithm performing at most (1+ε) log e(P) + Oε(n) comparisons; an O(n2.5) algorithm performing O(log e(P)) comparisons. All our algorithms are simple to implement. © 2010 ACM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a nonparametric 'revealed preference’ characterization of rational household behavior in terms of the collective consumption model, while accounting for general (possibly non-convex) individual preferences. We establish a Collective Axiom of Revealed Preference (CARP), which provides a necessary and sufficient condition for data consistency with collective rationality. Our main result takes the form of a ‘collective’ version of the Afriat Theorem for rational behavior in terms of the unitary model. This theorem has some interesting implications. With only a finite set of observations, the nature of consumption externalities (positive or negative) in the intra-household allocation process is non-testable. The same non-testability conclusion holds for privateness (with or without externalities) or publicness of consumption. By contrast, concavity of individual utility functions (representing convex preferences) turns out to be testable. In addition, monotonicity is testable for the model that assumes all household consumption is public.