3 resultados para CHRONIC ATRIAL FIBRILLATION
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
In an experimental model, variable and intermittent contact force (CF) resulted in a significant decrease in lesion volume. In humans, variability of CF during pulmonary vein isolation has not been characterized. Methods and Results-In 20 consecutive patients undergoing CF-guided circumferential pulmonary vein isolation, 914 radiofrequency applications (530 in sinus rhythm and 384 in atrial fibrillation) were analyzed. The variability of the 60% CF range (CF60%) was 17 ± 9.6 g. Hundred seventy-one (19%) applications were delivered with constant, 717 (78%) with variable, and 26 (3%) with intermittent CF. The mean CF and force-time integral were significantly higher during applications with variable than with intermittent or constant CF. There was no significant difference in CF variability, CF60% variability, and force-time integral between applications delivered in sinus rhythm and atrial fibrillation. The main reasons for CF variability were systolo-diastolic heart movement (29%) and respiration (27%). In 10 additional patients, during adenosine-induced atrioventricular block, the minimum CF significantly increased at 19 sites (5.3 ± 4.4 versus 13.4 ± 5.9 g; P < 0.001) and at 16 sites intermittent or variable CF became constant. At only 1 site systolo-diastolic movement remained the main reason for variable CF. Conclusions-CF during pulmonary vein isolation remains highly variable despite efforts to optimize contact. CF and CF parameters were similar during sinus rhythm and atrial fibrillation. The main reasons for CF variability are systolodiastolic heart movement and respiration. The systolo-diastolic peaks and nadirs of CF are because of ventricular contractions at the large majority of pulmonary vein isolation sites.
Resumo:
Interleukin (IL)-10, a potent anti-inflammatory cytokine, limits the severity of acute pancreatitis and downregulates transforming growth factor (TGF)-beta release by inflammatory cells on stimulation. Proinflammatory mediators, reactive oxygen species, and TGF-beta can activate pancreatic stellate cells and their synthesis of collagen I and III. This study evaluates the role of endogenous IL-10 in the modulation of the regeneration phase following acute pancreatitis and in the development of pancreatic fibrosis. IL-10 knockout (KO) mice and their C57BL/6 controls were submitted to repeated courses (3/wk, during 6 wk, followed by 1 wk of recovery) of cerulein-induced acute pancreatitis. TGF-beta(1) release was measured on plasma, and its pancreatic expression was assessed by quantitative RT-PCR and immunohistochemistry. Intrapancreatic IL-10 gene expression was assessed by semiquantitative RT-PCR, and intrapancreatic collagen content was assessed by picrosirius staining. Activated stellate cells were detected by immunohistochemistry. S phase intrapancreatic cells were marked using tritiated thymidine labeling. After repeated acute pancreatitis, IL-10 KO mice had more severe histological lesions and fibrosis (intrapancreatic collagen content) than controls. TGF-beta(1) plasma levels, intrapancreatic transcription, and expression by ductal and interstitial cells, as well as the number of activated stellate cells, were significantly higher. IL-10 KO mice disclosed significantly fewer acinar cells in S phase, whereas the opposite was observed for pseudotubular cells. Endogenous IL-10 controls the regeneration phase and limits the severity of fibrosis and glandular atrophy induced by repeated episodes of acute pancreatitis in mice.
Resumo:
SCOPUS: ar.j