2 resultados para CH4-SCR

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

By analyzing measured infrared absorption of pure CH4 gas under both "free" (large sample cell) and "confined" (inside the pores of a silica xerogel sample) conditions we give a demonstration that molecule-molecule and molecule-surface collisions lead to very different propensity rules for rotational-state changes. Whereas the efficiency of collisions to change the rotational state (observed through the broadening of the absorption lines) decreases with increasing rotational quantum number J for CH4-CH4 interactions, CH4-surface collisions lead to J-independent linewidths. In the former case, some (weak) collisions are inefficient whereas, in the latter case, a single collision is sufficient to remove the molecule from its initial rotational level. Furthermore, although some gas-phase collisions leave J unchanged and only modify the angular momentum orientation and/or symmetry of the level (as observed through the spectral effects of line mixing), this is not the case for the molecule-surface collisions since they always change J (in the studied J=0-14 range).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Space-borne thermal infrared instruments working in the nadir geometry are providing spectroscopic measurements of species that impact on the chemical composition of the atmosphere and on the climate forcing: H2O, CO2, N2O, CH4, CFCs, O3, and CO. The atmospheric abundances obtained from the analysis of IMG/ADEOS measurements are discussed in order to demonstrate the potential scientific return to be expected from future missions using advanced infrared nadir sounders. Some strengths and limitations of passive infrared remote sensing from space are illustrated. © 2003 European Geosciences Union.