26 resultados para CD8 antigen
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
BACKGROUND: Most individuals infected with Mycobacterium tuberculosis do not develop tuberculosis (TB) and can be regarded as being protected by an appropriate immune response to the infection. The characterization of the immune responses of individuals with latent TB may thus be helpful in the definition of correlates of protection and the development of new vaccine strategies. The highly protective antigen heparin-binding hemagglutinin (HBHA) induces strong interferon (IFN)- gamma responses during latent, but not active, TB. Because of the recently recognized importance of CD8(+) T lymphocytes in anti-TB immunity, we characterized the CD8(+) T lymphocyte responses to HBHA in subjects with latent TB. RESULTS: HBHA-specific CD8(+) T lymphocytes expressed memory cell markers and synthesized HBHA-specific IFN- gamma .They also restricted mycobacterial growth and expressed cytotoxicity by a granule-dependent mechanism. This activity was associated with the intracellular expression of HBHA-induced perforin. Surprisingly, the perforin-producing CD8(+) T lymphocytes were distinct from the IFN- gamma -producing CD8(+) T lymphocytes. CONCLUSION: During latent TB, the HBHA-specific CD8(+) T lymphocyte population expresses all 3 effector functions associated with CD8(+) T lymphocyte-mediated protective immune mechanisms, which supports the notion that HBHA may be protective in humans and suggests that markers of HBHA-specific CD8(+) T lymphocyte responses may be useful in the monitoring of protection.
Resumo:
Interactions of Mycobacterium tuberculosis with macrophages have long been recognized to be crucial to the pathogenesis of tuberculosis. The role of non-phagocytic cells is less well known. We have discovered a M. tuberculosis surface protein that interacts specifically with non-phagocytic cells, expresses hemagglutination activity and binds to sulfated glycoconjugates. It is therefore called heparin-binding hemagglutinin (HBHA). HBHA-deficient M. tuberculosis mutant strains are significantly impaired in their ability to disseminate from the lungs to other tissues, suggesting that the interaction with non-phagocytic cells, such as pulmonary epithelial cells, may play an important role in the extrapulmonary dissemination of the tubercle bacillus, one of the key steps that may lead to latency. Latently infected human individuals mount a strong T cell response to HBHA, whereas patients with active disease do not, suggesting that HBHA is a good marker for the immunodiagnosis of latent tuberculosis, and that HBHA-specific Th1 responses may contribute to protective immunity against active tuberculosis. Strong HBHA-mediated immuno-protection was shown in mouse challenge models. HBHA is a methylated protein and its antigenicity in latently infected subjects, as well as its protective immunogenicity strongly depends on the methylation pattern of HBHA. In both mice and man, the HBHA-specific IFN-gamma was produced by both the CD4(+) and the CD8(+) T cells. Furthermore, the HBHA-specific CD8(+) T cells expressed bactericidal and cytotoxic activities to mycobacteria-infected macrophages. This latter activity is most likely perforin mediated. Together, these observations strongly support the potential of methylated HBHA as an important component in future, acellular vaccines against tuberculosis.
Resumo:
Infant CD4+ T-cell responses to bacterial infections or vaccines have been extensively studied, whereas studies on CD8 + T-cell responses focused mainly on viral and intracellular parasite infections. Here we investigated CD8 + T-cell responses upon Bordetella pertussis infection in infants, children, and adults and pertussis vaccination in infants. Filamentous hemagglutinin-specific IFN-γ secretion by circulating lymphocytes was blocked by anti-MHC-I or -MHC-II antibodies, suggesting that CD4 + and CD8 + T lymphocytes are involved in IFN-γ production. Flow cytometry analyses confirmed that both cell types synthesized antigen-specific IFN-γ, although CD4 + lymphocytes were the major source of this cytokine. IFN-γ synthesis by CD8 + cells was CD4 + T cell dependent, as evidenced by selective depletion experiments. Furthermore, IFN-γ synthesis by CD4 + cells was sometimes inhibited by CD8 + lymphocytes, suggesting the presence of CD8 + regulatory T cells. The role of this dual IFN-γ secretion by CD4 + and CD8 + T lymphocytes in pertussis remains to be investigated. © 2012 Violette Dirix et al.
Resumo:
Recent evidence suggests that in addition to their well known stimulatory properties, dendritic cells (DCs) may play a major role in peripheral tolerance. It is still unclear whether a distinct subtype or activation status of DC exists that promotes the differentiation of suppressor rather than effector T cells from naive precursors. In this work, we tested whether the naturally occurring CD4+ CD25+ regulatory T cells (Treg) may control immune responses induced by DCs in vivo. We characterized the immune response induced by adoptive transfer of antigen-pulsed mature DCs into mice depleted or not of CD25+ cells. We found that the development of major histocompatibility complex class I and II-restricted interferon gamma-producing cells was consistently enhanced in the absence of Treg. By contrast, T helper cell (Th)2 priming was down-regulated in the same conditions. This regulation was independent of interleukin 10 production by DCs. Of note, splenic DCs incubated in vitro with Toll-like receptor ligands (lipopolysaccharide or CpG) activated immune responses that remained sensitive to Treg function. Our data further show that mature DCs induced higher cytotoxic activity in CD25-depleted recipients as compared with untreated hosts. We conclude that Treg naturally exert a negative feedback mechanism on Th1-type responses induced by mature DCs in vivo.
Resumo:
We report on a heart-lung transplant recipient who presented with pulmonary tuberculosis (TB) 2.5 months after transplantation and then developed a paradoxical reaction after 4 months of adequate anti-TB treatment. She eventually recovered with anti-TB and high-dose steroid treatments. METHODS: Using sequential bronchoalveolar lavages, we assessed the inflammatory response in the lung and investigated the alveolar immune response against a Mycobacterium tuberculosis antigen. RESULTS: The paradoxical reaction was characterized by a massive infiltration of the alveolar space by M. tuberculosis antigen-specific CD4(+) T cells and by the presence of a CD4(-)CD8(-) T lymphocyte subpopulation bearing phenotypic markers (CD16(+)/56(+)) classically associated with NK cells. CONCLUSION: This case report illustrates that even solid organ transplant recipients receiving intense triple-drug immune suppression may be able to develop a paradoxical reaction during TB treatment. Transplant physicians should be aware of this phenomenon in order to differentiate it from treatment failure.
Resumo:
Previously, we and others have shown that MHC class-II deficient humans have greatly reduced numbers of CD4+CD8- peripheral T cells. These type-III Bare Lymphocyte Syndrome patients lack MHC class-II and have an impaired MHC class-I antigen expression. In this study, we analyzed the impact of the MHC class-II deficient environment on the TCR V-gene segment usage in this reduced CD4+CD8- T-cell subset. For these studies, we employed TcR V-region-specific monoclonal antibodies (mAbs) and a semiquantitative PCR technique with V alpha and V beta amplimers, specific for each of the most known V alpha- and V beta-gene region families. The results of our studies demonstrate that some of the V alpha-gene segments are used less frequent in the CD4+CD8- T-cell subset of the patient, whereas the majority of the TCR V alpha- and V beta-gene segments investigated were used with similar frequencies in both subsets in the type-III Bare Lymphocyte Syndrome patient compared to healthy control family members. Interestingly, the frequency of TcR V alpha 12 transcripts was greatly diminished in the patient, both in the CD4+CD8- as well as in the CD4-CD8+ compartment, whereas this gene segment could easily be detected in the healthy family controls. On the basis of the results obtained in this study, it is concluded that within the reduced CD4+CD8- T-cell subset of this patient, most of the TCR V-gene segments tested for are employed. However, a skewing in the usage frequency of some of the V alpha-gene segments toward the CD4-CD8+ T-cell subset was noticeable in the MHC class-II deficient patient that differed from those observed in the healthy family controls.
Resumo:
Measurement of antigen-specific T cell responses is an adjunctive parameter to evaluate protection induced by a previous Bordetella pertussis infection or vaccination. The assessment of T cell responses is technically complex and usually performed on fresh peripheral blood mononuclear cells (PBMC). The objective of this study was to identify simplified methods to assess pertussis specific T cell responses and verify if these assays could be performed using frozen/thawed (frozen) PBMC. Three read-outs to measure proliferation were compared: the fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) dilution test, the number of blast cells defined by physical parameters, and the incorporation of (3)H-thymidine. The results of pertussis-specific assays performed on fresh PBMC were compared to the results on frozen PBMC from the same donor. High concordance was obtained when the results of CFSE and blast read-outs were compared, an encouraging result since blast analysis allows the identification of proliferating cells and does not require any use of radioactive tracer as well as any staining. The results obtained using fresh and frozen PBMC from the same donor in the different T cell assays, including IFNγ and TNFα cytokine production, did not show significant differences, suggesting that a careful cryopreservation process of PBMC would not significantly influence T cell response evaluation. Adopting blast analysis and frozen PBMC, the possibility to test T cell responses is simplified and might be applied in population studies, providing for new instruments to better define correlates of protection still elusive in pertussis.
Resumo:
info:eu-repo/semantics/published
Resumo:
Type II alveolar epithelial cells (AECII) are well known for their role in the innate immune system. More recently, it was proposed that they could play a role in the antigen presentation to T lymphocytes but contradictory results have been published both concerning their surface expressed molecules and the T lymphocyte responses in mixed lymphocyte cultures. The use of either AECII cell line or fresh cells could explain the observed discrepancies. Thus, this study aimed at defining the most relevant model of accessory antigen presenting cells by carefully comparing the two models for their expression of surface molecules necessary for efficient antigen presentation.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/published
Resumo:
Taking advantage of recent findings about membrane fluidity, the authors studied and compared the biosynthetic capacities of fetal or neonatal mouse B (bone marrow derived) lymphocytes (until 10 days after birth) and adult B lymphocytes. Although both early and adult lymphocytes can synthesize surface immunoglobulins, they have a different physiological behavior after interaction with a ligand (anti immunoglobulin sera or antigen), either in vivo or in vitro. Fetal and neonatal lymphocytes bearing surface immunoglobulins do not reexpress their membrane receptors after capping and endocytosis promoted by anti immunoglobulin sera. On the other hand, adult lymphocytes resynthesize completely their receptors after the same treatment. Furthermore, intrafetal injections of hemocyanin in pregnant mice lead to a striking decrease in the number of hemocyanin binding cells. It seems plausible that this non reexpression of surface immunoglobulins could be the first step in tolerance establishment.
Resumo:
Helicobacter pylori is a human pathogen that colonizes about 50% of the world's population, causing chronic gastritis, duodenal ulcers and even gastric cancer. A steady emergence of multiple antibiotic resistant strains poses an important public health threat and there is an urgent requirement for alternative therapeutics. The blood group antigen-binding adhesin BabA mediates the intimate attachment to the host mucosa and forms a major candidate for novel vaccine and drug development. Here, the recombinant expression and crystallization of a soluble BabA truncation (BabA25-460) corresponding to the predicted extracellular adhesin domain of the protein are reported. X-ray diffraction data for nanobody-stabilized BabA25-460 were collected to 2.25Å resolution from a crystal that belonged to space group P21, with unit-cell parameters a = 50.96, b = 131.41, c = 123.40Å, α = 90.0, β = 94.8, γ = 90.0°, and which was predicted to contain two BabA25-460-nanobody complexes per asymmetric unit.
Resumo:
Because only 10% of individuals infected with Mycobacterium tuberculosis will eventually develop disease, antigens that are recognized differently by the immune systems of infected healthy and diseased subjects may constitute potential vaccine candidates. Here, the heparin-binding hemagglutinin adhesin (HBHA) is identified as such an antigen. Lymphocytes from 60% of healthy infected individuals (n=25) produced interferon (IFN)-gamma after stimulation with HBHA, compared with only 4% of patients with active tuberculosis (n=24). In the responders, both CD4(+) and CD8(+) cells secreted HBHA-specific IFN-gamma, and the antigen was presented by both major histocompatibility complex class I and II molecules. In contrast to the reduced ability of patients with tuberculosis to produce HBHA-specific IFN-gamma, most of them (82%) produced anti-HBHA antibodies, compared with 36% of the infected healthy subjects. These observations indicate that HBHA is recognized differently by the immune systems of patients with tuberculosis and infected healthy individuals and might provide a marker for protection against tuberculosis.
Resumo:
Real-time polymerase chain reaction (PCR) has recently been described as a new tool to measure and accurately quantify mRNA levels. In this study, we have applied this technique to evaluate cytokine mRNA synthesis induced by antigenic stimulation with purified protein derivative (PPD) or heparin-binding haemagglutinin (HBHA) in human peripheral blood mononuclear cells (PBMC) from Mycobacterium tuberculosis-infected individuals. Whereas PPD and HBHA optimally induced IL-2 mRNA after respectively 8 and 16 to 24 h of in vitro stimulation, longer in vitro stimulation times were necessary for optimal induction of interferon-gamma (IFN-gamma) mRNA, respectively 16 to 24 h for PPD and 24 to 96 h for HBHA. IL-13 mRNA was optimally induced by in vitro stimulation after 16-48 h for PPD and after 48 to 96 h for HBHA. Comparison of antigen-induced Th1 and Th2 cytokines appears, therefore, valuable only if both cytokine types are analysed at their optimal time point of production, which, for a given cytokine, may differ for each antigen tested. Results obtained by real-time PCR for IFN-gamma and IL-13 mRNA correlated well with those obtained by measuring the cytokine concentrations in cell culture supernatants, provided they were high enough to be detected. We conclude that real-time PCR can be successfully applied to the quantification of antigen-induced cytokine mRNA and to the evaluation of the Th1/Th2 balance, only if the kinetics of cytokine mRNA appearance are taken into account and evaluated for each cytokine measured and each antigen analysed.