2 resultados para Blood coagulation disorders in infants

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the diencephalic syndrome in cases so far collected from the literature was carried out on the clinical, macroscopic and histological brain findings found recorded in, respectively, 29, 25 and 34 cases. For comparison, 3 further cases with this syn- drome were described, in which a diagnosis of optic nerve glioma could be made. The review of the 39 cases with the diencephalic syndrome has shown that in 90°/o of these patients an extensive glioma of the 3rd ventricle had been present. 70% of these patients had additional glioma of optic nerves and/or chiasm with an equal amount of infants having diminished visual acuity in one or both eyes. From these, so far unreported, findings, strong suggestive evidence was thus presented that the ‘diencephalic syndrome’ described in infants was indeed a mor¬bid entity, namely, a hypothalamo-optic glioma. The further question whether this brain tumour was a primary optic nerve rather than a primary diencephalic glioma could presently not be firmly answered from the reviewed data of the literature. © 1972 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in red blood cell (RBC) function can contribute to alterations in microcirculatory blood flow and cellular dysoxia in sepsis. Decreases in RBC and neutrophil deformability impair the passage of these cells through the microcirculation. While the role of leukocytes has been the focus of many studies in sepsis, the role of erythrocyte rheological alterations in this syndrome has only recently been investigated. RBC rheology can be influenced by many factors, including alterations in intracellular calcium and adenosine triphosphate (ATP) concentrations, the effects of nitric oxide, a decrease in some RBC membrane components such as sialic acid, and an increase in others such as 2,3 diphosphoglycerate. Other factors include interactions with white blood cells and their products (reactive oxygen species), or the effects of temperature variations. Understanding the mechanisms of altered RBC rheology in sepsis, and the effects on blood flow and oxygen transport, may lead to improved patient management and reductions in morbidity and mortality.