2 resultados para Bis(2-{pyrid-2-yl}ethyl)amine
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Anions such as Cl(-) and HCO3 (-) are well known to play an important role in glucose-stimulated insulin secretion (GSIS). In this study, we demonstrate that glucose-induced Cl(-) efflux from β-cells is mediated by the Ca(2+)-activated Cl(-) channel anoctamin 1 (Ano1). Ano1 expression in rat β-cells is demonstrated by reverse transcriptase-polymerase chain reaction, western blotting, and immunohistochemistry. Typical Ano1 currents are observed in whole-cell and inside-out patches in the presence of intracellular Ca(++): at 1 μM, the Cl(-) current is outwardly rectifying, and at 2 μM, it becomes almost linear. The relative permeabilities of monovalent anions are NO3 (-) (1.83 ± 0.10) > Br(-) (1.42 ± 0.07) > Cl(-) (1.0). A linear single-channel current-voltage relationship shows a conductance of 8.37 pS. These currents are nearly abolished by blocking Ano1 antibodies or by the inhibitors 2-(5-ethyl-4-hydroxy-6-methylpyrimidin-2-ylthio)-N-(4-(4-methoxyphenyl)thiazol-2-yl)acetamide (T-AO1) and tannic acid (TA). These inhibitors induce a strong decrease of 16.7-mM glucose-stimulated action potential rate (at least 87 % on dispersed cells) and a partial membrane repolarization with T-AO1. They abolish or strongly inhibit the GSIS increment at 8.3 mM and at 16.7 mM glucose. Blocking Ano1 antibodies also abolish the 16.7-mM GSIS increment. Combined treatment with bumetanide and acetazolamide in low Cl(-) and HCO3 (-) media provokes a 65 % reduction in action potential (AP) amplitude and a 15-mV AP peak repolarization. Although the mechanism triggering Ano1 opening remains to be established, the present data demonstrate that Ano1 is required to sustain glucose-stimulated membrane potential oscillations and insulin secretion.
Resumo:
The saddle gall midge, Haplodiplosis marginata (von Roser) (Diptera: Cecidomyiidae), has undergone a resurgence recently as a pest of cereals in Belgium and other European countries. An effective monitoring tool of saddle gall midge flights is needed to understand the enigmatic population dynamics of this pest, and to design an integrated management strategy. Therefore, volatile compounds emitted by females (alkan-2-ols and alk-2-yl butanoates) were identified, and the chirality of the emitted esters was determined to be the R absolute configuration. In field-trapping experiments, racemic non-2-yl butanoate attracted substantial numbers of H.marginata males. Thus, this compound will be useful in baited traps for monitoring seasonal flight patterns, and improving integrated management of the saddle gall midge in agricultural systems.