4 resultados para Ar Evidence
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water-rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500 mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T≃300°C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic end member is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160 m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system.
Resumo:
Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant.
Resumo:
Biofuel plants such as Jatropha curcas L. have potential to support the livelihoods of rural communities and contribute to sustainable rural development in Africa, if risks and uncertainties are minimized. Yet, recent papers have warned of the risk of biological invasions in such tropical regions as a consequence of the introduction of exotic biofuel crops. We investigated the seed dispersal risk and invasiveness potential of both J. curcas monoculture plantations and live fences into adjacent cultivated and uncultivated land use systems in Sissili province, Burkina Faso. Invasiveness potential was assessed through (i) detecting evidence of natural regeneration in perimeters around J. curcas plantations and live fences, (ii) assessing seed dispersal mechanisms, and (iii) assessing seedling establishment potential through in situ direct seed sowing. Spontaneous regeneration around the plantation perimeters of the three sites was very low. Individual seedling density around J. curcas live fences was less than 0.01 m−2 in all sites. Seventy percent of the seedlings were found close to the live fence and most of them derived from the same year (96 %), which indicates low seed-bank longevity and seedling survival. J. curcas can be dispersed by small mammals and arthropods, particularly rodents and ants. In some sites, such as in Onliassan, high secondary seed dispersal by animals (up to 98 %) was recorded. There were highly significant differences in germination rates between seeds at the soil surface (11 %) and those buried artificially at 1–2-cm depth (64 %). In conclusion, we failed to find convincing evidence of the spreading of J. curcas or any significant impact on the surrounding environment.
Resumo:
This article reports a unique analysis of private engagements by an activist fund. It is based on data made available to us by Hermes, the fund manager owned by the British Telecom Pension Scheme, on engagements with management in companies targeted by its UK Focus Fund. In contrast with most previous studies of activism, we report that the fund executes shareholder activism predominantly through private interventions that would be unobservable in studies purely relying on public information. The fund substantially outperforms benchmarks and we estimate that abnormal returns are largely associated with engagements rather than stock picking. © The Author 2008.