6 resultados para Adverse drug reactions or ADR
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The aim of this study was to determine the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and potential activity of combined gemcitabine and continuous infusion 5-fluorouracil (5-FU) in metastatic breast cancer (MBC) patients that are resistant to anthracyclines or have been pretreated with both anthracyclines and taxanes. 15 patients with MBC were studied at three European Organization for Research and Treatment of Cancer centres. 13 patients had received both anthracylines and taxanes. Gemcitabine was given intravenously (i.v.) on days 1 and 8, and 5-FU as a continuous i.v. infusion on days 1 through to 14, both drugs given in a 21-day schedule at four different dose levels. Both were given at doses commonly used for the single agents for the last dose level (dose level 4). One of 6 patients at level 4 (gemcitabine 1200 mg/m2 and 5-FU 250 mg/m2/day) had a DLT, a grade 3 stomatitis and skin toxicity. One DLT, a grade 3 transaminase rise and thrombosis, occurred in a patient at level 2 (gemcitabine 1000 mg/m2 and 5-FU 200 mg/m2/day). Thus, the MTD was not reached. One partial response and four disease stabilisations were observed. Only 1 patient withdrew from the treatment due to toxicity. The MTD was not reached in the phase I study. The combination of gemcitabine and 5-FU is well tolerated at doses up to 1200 mg/m2 given on days 1 and 8 and 250 mg/m2/day given on days 1 through to 14, respectively, every 21 days. The clinical benefit rate (responses plus no change of at least 6 months) was 33% with one partial response, suggesting that MBC patients with prior anthracycline and taxane therapy may derive significant benefit from this combination with minimal toxicity.
Resumo:
PURPOSE: To compare health-related quality of life (HRQOL) in patients with metastatic breast cancer receiving the combination of doxorubicin and paclitaxel (AT) or doxorubicin and cyclophosphamide (AC) as first-line chemotherapy treatment. PATIENTS AND METHODS: Eligible patients (n = 275) with anthracycline-naive measurable metastatic breast cancer were randomly assigned to AT (doxorubicin 60 mg/m(2) as an intravenous bolus plus paclitaxel 175 mg/m(2) as a 3-hour infusion) or AC (doxorubicin 60 mg/m(2) plus cyclophosphamide 600 mg/m(2)) every 3 weeks for a maximum of six cycles. Dose escalation of paclitaxel (200 mg/m(2)) and cyclophosphamide (750 mg/m(2)) was planned at cycle 2 to reach equivalent myelosuppression in the two groups. HRQOL was assessed with the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire C30 and the EORTC Breast Module at baseline and the start of cycles 2, 4, and 6, and 3 months after the last cycle. RESULTS: Seventy-nine percent of the patients (n = 219) completed a baseline measure. However, there were no statistically significant differences in HRQOL between the two treatment groups. In both groups, selected aspects of HRQOL were impaired over time, with increased fatigue, although some clinically significant improvements in emotional functioning were seen, as well as a reduction in pain over time. Overall, global quality of life was maintained in both treatment groups. CONCLUSION: This information is important when advising women patients of the expected HRQOL consequences of treatment regimens and should help clinicians and their patients make informed treatment decisions.
Resumo:
In breast cancer, chemotherapy regimens that include infusional 5-fluorouracil (5-FU) lead to high response rates, but require central venous access and pumps. To avoid these inconveniences, we substituted infusional 5-FU with capecitabine. The main objective of this study was to determine the maximum tolerated dose (MTD) of capecitabine when given in combination with fixed doses of epirubicin and cyclophosphamide (100 and 600 mg/m(2) day 1 every (q) 3 weeks) as primary treatment for large operable or locally advanced/inflammatory breast cancer without distant metastasis. Capecitabine was escalated from 750 mg/m(2) twice a day (bid) to 1250 mg/m(2) bid from day 1 to day 14 in four dose levels. Dose escalation was permitted if 0/3 or 1/6 patients experienced dose-limiting toxicity (DLT). A total of 23 patients were included and 117 courses were administered. At dose level 4, 2 of 2 patients presented DLTs defining the MTD. A high rate of capecitabine treatment modification was required with capecitabine 1050 mg/m(2) bid (dose level 3). 19 patients achieved an objective response (83%). In conclusion, we believe that capecitabine 900 mg/m(2) bid (dose level 2) is the recommended dose in combination with epirubicin 100 mg/m(2) and cyclophosphamide 600 mg/m(2). The acceptable toxicity profile and encouraging activity of this regimen warrant further evaluation.
Resumo:
PURPOSE: The association of continuous infusion 5-fluorouracil, epirubicin (50 mg/m2 q 3 weeks) and a platinum compound (cisplatin or carboplatin) was found to be very active in patients with either locally advanced/inflammatory (LA/I) [1, 2] or large operable (LO) breast cancer (BC) [3]. The same rate of activity in terms of response rate (RR) and response duration was observed in LA/I BC patients when cisplatin was replaced by cyclophosphamide [4]. The dose of epirubicin was either 50 mg/m2 [ 1, 2, 3] or 60 mg/m2/cycle [4]. The main objective of this study was to determine the maximum tolerated dose (MTD) of epirubicin when given in combination with fixed doses of cyclophosphamide and infusional 5-fluorouracil (CEF-infu) as neoadjuvant therapy in patients with LO or LA/I BC for a maximum of 6 cycles. PATIENTS AND METHODS: Eligible patients had LO or LA/I BC, a performance status 0-1, adequate organ function and were <65 years old. Cyclophosphamide was administered at the dose of 400 mg/m2 day 1 and 8, q 4 weeks and infusional 5-fluorouracil 200 mg/m2/day was given day 1-28, q 4 weeks. Epirubicin was escalated from 30 to 45 and to 60 mg/m2 day 1 and 8; dose escalation was permitted if 0/3 or 1/6 patients experienced dose limiting toxicity (DLT) during the first 2 cycles of therapy. DLT for epirubicin was defined as febrile neutropenia, grade 4 neutropenia lasting for >7 days, grade 4 thrombocytopenia, or any non-haematological toxicity of CTC grade > or =3, excluding alopecia and plantar-palmar erythrodysesthesia (this toxicity was attributable to infusional 5-fluorouracil and was not considered a DLT of epirubicin). RESULTS: A total of 21 patients, median age 44 years (range 29-63) have been treated. 107 courses have been delivered, with a median number of 5 cycles per patient (range 4-6). DLTs on cycles I and 2 on level 1, 2, 3: grade 3 (G3) mucositis occurred in 1/10 patients treated at the third dose level. An interim analysis showed that G3 PPE occurred in 5/16 pts treated with the 28-day infusional 5-FU schedule at the 3 dose levels. The protocol was subsequently amended to limit the duration of infusional 5-fluorouracil infusion from 4 to 3 weeks. No G3 PPE was detected in 5 patients treated with this new schedule. CONCLUSIONS: This study establishes that epirubicin 60mg/m2 day 1 and 8, cyclophosphamide 400mg/m2 day 1 and 8 and infusional 5-fluorouracil 200 mg/m2/day day 1-21. q 4 weeks is the recommended dose level. Given the encouraging activity of this regimen (15/21 clinical responses) we have replaced infusional 5-fluorouracil by oral capecitabine in a recently activated study.
Resumo:
BACKGROUND: The impact of aromatase inhibitors (AIs) on non-cancer-related outcomes, which are known to be affected by oestrogens, has become increasingly important in postmenopausal women with hormone-dependent breast cancer. So far, data related to the effect of AIs on lipid profile in postmenopausal women is scarce. This study, as a companion substudy of an EORTC phase II trial (10951), evaluated the impact of exemestane, a steroidal aromatase inactivator, on the lipid profile of postmenopausal metastatic breast cancer (MBC) patients. PATIENTS AND METHODS: The EORTC trial 10951 randomised 122 postmenopausal breast cancer patients to exemestane (E) 25 mg (n = 62) or tamoxifen (T) 20 mg (n = 60) once daily as a first-line treatment in the metastatic setting. Exemestane showed promising results in all the primary efficacy end points of the trial (response rate, clinical benefit rate and response duration), and it was well tolerated with low incidence of serious toxicity. As a secondary end point of this phase II trial, serum triglycerides (TRG), high-density lipoprotein cholesterol (HDL), total cholesterol (TC), lipoprotein a (Lip a), and apolipoproteins (Apo) B and A1 were measured at baseline and while on therapy (at 8, 24 and 48 weeks) to assess the impact of exemestane and tamoxifen on serum lipid profiles. Of the 122 randomised patients, those who had baseline and at least one other lipid assessment are included in the present analysis. The patients who received concomitant drugs that could affect lipid profile are included only if these drugs were administered throughout the study treatment. Increase or decrease in lipid parameters within 20% of baseline were considered as non-significant and thus unchanged. RESULTS: Seventy-two patients (36 in both arms) were included in the statistical analysis. The majority of patients had abnormal TC and normal TRG, HDL, Apo A1, Apo B and Lip a levels at baseline. Neither exemestane nor tamoxifen had adverse effects on TC, HDL, Apo A1, Apo B or Lip a levels at 8, 24 and 48 weeks of treatment. Exemestane and tamoxifen had opposite effects on TRG levels: exemestane lowered while tamoxifen increased TRG levels over time. There were too few patients with normal baseline TC and abnormal TRG, HDL, Apo A1, Apo B and Lip a levels to allow for assessment of E's impact on these subsets. The atherogenic risk determined by Apo A1:Apo B and TC:HDL ratios remained unchanged throughout the treatment period in both the E and T arms. CONCLUSIONS: Overall, exemestane has no detrimental effect on cholesterol levels and the atherogenic indices, which are well-known risk factors for coronary artery disease. In addition, it has a beneficial effect on TRG levels. These data, coupled with E's excellent efficacy and tolerability, support further exploration of its potential in the metastatic, adjuvant and chemopreventive setting.
Resumo:
Purpose: Some phase II studies have suggested that the combination of interferons (IFNs) with dacarbazine (DTIC) in the treatment of malignant melanoma (MM) increases the antitumor activity of DTIC alone. In an attempt to confirm this hypothesis, a randomized study was performed with the further intent of observing whether low doses of recombinant interferon alfa-2a (rIFNα2a) could be as effective as intermediate doses. Patients and Methods: Two hundred sixty-six patients were randomized onto three different treatment arms: DTIC 800 mg/m 2 intravenously (IV) days 1 and 21; DTIC plus rIFNα2a 9 mIU intramuscularly (IM) daily; and DTIC plus rIFNα2a 3 mIU IM three times per week. Major prognostic factors were well balanced among the three arms. Chemotherapy was administered for a maximum of eight cycles. After 6 months of therapy, rIFNα2a was continued until disease progression at 3 mIU three times per week in responding patients who had received the combined treatment. Results: The percentage of objective responses did not differ among the three groups (20%, 28%, and 23%, respectively), although a significant prolongation of response duration was observed when rIFNα2a was added to DTIC (2.6 v 8.4 v 5.5 months, respectively). However, this improvement in response duration did not translate into an amelioration of overall survival. The addition of rIFNα2a led to the onset of flu-like syndrome, but in no case was it necessary to withdraw the treatment program and no toxic deaths or life-threatening toxicities were reported. Conclusion: In this study, rIFNα2a significantly prolonged response duration, whereas no effects on response rate and survival were observed; rIFNα2a 3 mIU appeared to be equally effective and better tolerated than 9 mIU.