3 resultados para Active vibration control
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
RATIONALE: Tuberculosis (TB) remains a leading cause of death, and the role of T-cell responses to control Mycobacterium tuberculosis infections is well recognized. Patients with latent TB infection develop strong IFN-gamma responses to the protective antigen heparin-binding hemagglutinin (HBHA), whereas patients with active TB do not. OBJECTIVES: We investigated the mechanism of this difference and evaluated the possible involvement of regulatory T (Treg) cells and/or cytokines in the low HBHA T-cell responses of patients with active TB. METHODS: The impact of anti-transforming growth factor (TGF)-beta and anti-IL-10 antibodies and of Treg cell depletion on the HBHA-induced IFN-gamma secretion was analyzed, and the Treg cell phenotype was characterized by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Although the addition of anti-TGF-beta or anti-IL-10 antibodies had no effect on the HBHA-induced IFN-gamma secretion in patients with active TB, depletion of CD4(+)CD25(high)FOXP3(+) T lymphocytes resulted in the induction by HBHA of IFN-gamma concentrations that reached levels similar to those obtained for latent TB infection. No effect was noted on the early-secreted antigen target-6 or candidin T-cell responses. CONCLUSIONS: Specific CD4(+)CD25(high)FOXP3(+) T cells depress the T-cell-mediated immune responses to the protective mycobacterial antigen HBHA during active TB in humans.
Resumo:
Objectives: One third of the world population is considered latently infected with Mycobacterium tuberculosis(LTBI) and sterilizing this reservoir of bacteria that may reactivate is required for tuberculosis (TB) elimination. Thegroup of individuals with LTBI is heterogeneous with some of them being more at risk to develop TB disease thanothers. Improved diagnosis of subjects with LTBI is needed, allowing to differentiate subjects with LTBI from thosewith active TB, and to select among LTBI subjects those who are more at risk to develop active TB. We havecharacterized at the cellular level both the quantitative and qualitative T cell responses to different mycobacterialantigens in selected populations of infected subjects in order to identify new biomarkers that could help to identify M.tuberculosis-infected subjects and to stratify them in risk groups for reactivation of the infection.Methods: Lymphoblast frequencies and cytokine production (IFN-γ, TNF-α, IL-2) among CD4+ and CD8+ T cellswere analyzed by flow cytometry after in vitro stimulation with the latency antigen heparin-binding haemagglutinin(HBHA) or early-secreted antigen Target-6 (ESAT-6) of peripheral blood mononuclear cells from clinically wellcharacterized M. tuberculosis-infected humans (28 LTBI, 22 TB disease,12 controls). The LTBI group definedaccording to the Center for Disease Control guidelines was subdivided into QuantiFERON-TB Gold in-Tube (QFT)positive and negative subgroups.Results: Similar to TB patients, QFT+ LTBI subjects had higher proportions of HBHA-induced TNF-αsingle+ CD4+lymphocytes than QFT- LTBI subjects (p<0.05). Compared to LTBI subjects, TB patients had higher frequencies ofESAT-6-induced CD8+ lymphoblasts (p<0.001), higher proportions of ESAT-6-induced IFN-γ+TNF-α+ CD4+ Tlymphocytes (p<0.05), and lower proportions of HBHA-induced IFN-γ+TNF-α+IL-2+ (p<0.05) CD4+ T lymphocytes.Conclusions: These data provide new biomarkers to discriminate active TB from LTBI, and more interestingly,help to identify LTBI subjects with increased likelihood to develop TB disease.
Resumo:
OBJECTIVES: To evaluate the immune reconstitution in HIV-1-infected children in whom highly active antiretroviral therapy (HAART) controlled viral replication and to assess the existence of a relation between the magnitude of this restoration and age. METHODS: All HIV-1-infected children in whom a new HAART decreased plasma viral load below 400 copies/ml after 3 months of therapy were prospectively enrolled in a study of their immune reconstitution. Viral load, lymphocyte phenotyping, determination of CD4+ and CD8+ T cell receptor repertoires and proliferative responses to mitogens and recall antigens were assessed every 3 months during 1 year. RESULTS: Nineteen children were evaluated. Naive and memory CD4+ percentages were already significantly increased after 3 months of HAART. In contrast to memory CD4+ percentages, naive CD4+ percentages continued to rise until 12 months. Age at baseline was inversely correlated with the magnitude of the rise in naive CD4+ cells after 3, 6 and 9 months of therapy but not after 12 months. Although memory and activated CD8+ cells were already decreasing after 3 months, abnormalities of the CD8 T cell receptor repertoire and activation of CD8+ cells persisted at 1 year. HAART increased the response to mitogens as early as 3 months after starting therapy. CONCLUSIONS: In children the recovery of naive CD4+ cells occurs more rapidly if treatment is started at a younger age, but after 1 year of viral replication control, patients of all ages have achieved the same level of restoration. Markers of chronic activation in CD8+ cells persist after 1 year of HAART.