2 resultados para ARTIFICIAL MOLECULE

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether a terminally ill cancer patient should be actively fed or simply hydrated through subcutaneous or intravenous infusion of isotonic fluids is a matter of ongoing controversy among clinicians involved in the care of these patients. Under the auspices of the European Association for Palliative Care, a committee of experts developed guidelines to help clinicians make a reasonable decision on what type of nutritional support should be provided on a case-by-case basis. It was acknowledged that part of the controversy related to the definition of the terminal cancer patient, since this is a heterogeneous group of patients with different needs, expectations, and potential for a medical intervention. A major difficulty is the prediction of life expectancy and the patient's likely response to vigorous nutritional support. In an attempt to reach a decision on the type of treatment support (artificial nutrition vs. hydration) which would best meet the needs and expectations of the patient, we propose a three-step process: Step I: define the eight key elements necessary to reach a decision: Step II: make the decision; and Step III: reevaluate the patient and the proposed treatment at specified intervals. Step I involves assessing the patient concerning the following: 1) oncological/clinical condition; 2) symptoms; 3) expected length of survival; 4) hydration and nutritional status; 5) spontaneous or voluntary nutrient intake; 6) psychological profile; 7) gut function and potential route of administration; and 8) need for special services based on type of nutritional support prescribed. Step II involves the overall assessment of pros and cons, based on information determined in Step I, in order to reach an appropriate decision based on a well-defined end point (i.e. improvement of quality of life; maintaining patient survival; attaining rehydration). Step III involves the periodic reevaluation of the decision made in Step II based on the proposed goal and the attained result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By analyzing measured infrared absorption of pure CH4 gas under both "free" (large sample cell) and "confined" (inside the pores of a silica xerogel sample) conditions we give a demonstration that molecule-molecule and molecule-surface collisions lead to very different propensity rules for rotational-state changes. Whereas the efficiency of collisions to change the rotational state (observed through the broadening of the absorption lines) decreases with increasing rotational quantum number J for CH4-CH4 interactions, CH4-surface collisions lead to J-independent linewidths. In the former case, some (weak) collisions are inefficient whereas, in the latter case, a single collision is sufficient to remove the molecule from its initial rotational level. Furthermore, although some gas-phase collisions leave J unchanged and only modify the angular momentum orientation and/or symmetry of the level (as observed through the spectral effects of line mixing), this is not the case for the molecule-surface collisions since they always change J (in the studied J=0-14 range).