5 resultados para ACUTE MESENTERIC ISCHEMIA

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensity and kinetics of the serum polymeric and monomeric immunoglobulin A1 (IgA1) and IgA2 antibody responses to Campylobacter jejuni were analyzed. A rapid and marked serum IgA antibody response involving both the monomeric and polymeric components of IgA was observed after C. jejuni infections. IgA antibodies reached a peak of activity in serum during week 2 after the first symptoms of enteritis, about 10 days before the peak of IgG activity. Polymeric IgA accounted for most of the anti-C. jejuni activity at the peak of the IgA response (median, 90%; range, 44 to 98%) but rapidly disappeared from serum over a few weeks. In contrast, the serum monomeric IgA antibody response was low and was maintained over a prolonged period of time. Anti-C. jejuni IgA detected in the serum of healthy blood donors was mainly monomeric (median, 83%; range, 17 to 94%). In both the patients and the positive controls, IgA1 was the predominant (greater than 85%) subclass involved, even when the IgA antibody response was mainly polymeric. Our results suggest that polymeric IgA antibody responses are linked to a strong or persisting antigenic stimulation or both. Polymeric IgA antibodies appear to be a potential marker of acute C. jejuni infections, and their determination could provide a useful tool for the serological diagnosis of recent C. jejuni infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine the immediate phase-shifting effects of high-intensity exercise of a practical duration (1 h) on human circadian phase, five groups of healthy men 20-30 yr of age participated in studies involving no exercise or exposure to morning, afternoon, evening, or nocturnal exercise. Except during scheduled sleep/dark and exercise periods, subjects remained under modified constant routine conditions allowing a sleep period and including constant posture, knowledge of clock time, and exposure to dim light intensities averaging (±SD) 42 ± 19 lx. The nocturnal onset of plasma melatonin secretion was used as a marker of circadian phase. A phase response curve was used to summarize the phase-shifting effects of exercise as a function of the timing of exercise. A significant effect of time of day on circadian phase shifts was observed (P < 0.004). Over the interval from the melatonin onset before exercise to the first onset after exercise, circadian phase was significantly advanced in the evening exercise group by 30 ± 15 min (SE) compared with the phase delays observed in the no-exercise group (-25 ± 14 min, P < 0.05). Phase shifts in response to evening exercise exposure were attenuated on the second day after exercise exposure and no longer significantly different from phase shifts observed in the absence of exercise. Unanticipated transient elevations of melatonin levels were observed in response to nocturnal exercise and in some evening exercise subjects. Taken together with the results from previous studies in humans and diurnal rodents, the current results suggest that 1) a longer duration of exercise exposure and/or repeated daily exposure to exercise may be necessary for reliable phase-shifting of the human circadian system and that 2) early evening exercise of high intensity may induce phase advances relevant for nonphotic entrainment of the human circadian system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Few data are available on the potential role of T lymphocytes in experimental acute pancreatitis. The aim of this study was to characterize their role in the inflammatory cascade of acute pancreatitis. METHODS: To type this issue, acute pancreatitis was induced by repeated injections of cerulein in nude mice and in vivo CD4(+) or CD8(+) T cell-depleted mice. The role of T lymphocyte-costimulatory pathways was evaluated using anti-CD40 ligand or anti-B7-1 and -B7-2 monoclonal blocking antibodies. The role of Fas-Fas ligand was explored using Fas ligand-targeted mutant (generalized lymphoproliferative disease) mice. Severity of acute pancreatitis was assessed by serum hydrolase levels and histology. Intrapancreatic interleukin 12, interferon gamma, Fas ligand, and CD40 ligand messenger RNA were detected by reverse-transcription polymerase chain reaction. Intrapancreatic T lymphocytes were identified by immunohistochemistry. RESULTS: In control mice, T cells, most of them CD4(+) T cells, are present in the pancreas and are recruited during acute pancreatitis. In nude mice, histological lesions and serum hydrolase levels are significantly decreased. T-lymphocyte transfer into nude mice partially restores the severity of acute pancreatitis and intrapancreatic interferon gamma, interleukin 12, and Fas ligand gene transcription. The severity of pancreatitis is also reduced by in vivo CD4(+) (but not CD8(+)) T-cell depletion and in Fas ligand-targeted mutant mice. Blocking CD40-CD40 ligand or B7-CD28 costimulatory pathways has no effect on the severity of pancreatitis. CONCLUSIONS: T lymphocytes, particularly CD4(+) T cells, play a pivotal role in the development of tissue injury during acute experimental pancreatitis in mice.