2 resultados para 28-267

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Dolutegravir (S/GSK1349572), a once-daily, unboosted integrase inhibitor, was recently approved in the United States for the treatment of human immunodeficiency virus type 1 (HIV-1) infection in combination with other antiretroviral agents. Dolutegravir, in combination with abacavir-lamivudine, may provide a simplified regimen. METHODS: We conducted a randomized, double-blind, phase 3 study involving adult participants who had not received previous therapy for HIV-1 infection and who had an HIV-1 RNA level of 1000 copies per milliliter or more. Participants were randomly assigned to dolutegravir at a dose of 50 mg plus abacavir-lamivudine once daily (DTG-ABC-3TC group) or combination therapy with efavirenz-tenofovir disoproxil fumarate (DF)-emtricitabine once daily (EFV-TDF-FTC group). The primary end point was the proportion of participants with an HIV-1 RNA level of less than 50 copies per milliliter at week 48. Secondary end points included the time to viral suppression, the change from baseline in CD4+ T-cell count, safety, and viral resistance. RESULTS: A total of 833 participants received at least one dose of study drug. At week 48, the proportion of participants with an HIV-1 RNA level of less than 50 copies per milliliter was significantly higher in the DTG-ABC-3TC group than in the EFV-TDF-FTC group (88% vs. 81%, P = 0.003), thus meeting the criterion for superiority. The DTG-ABC-3TC group had a shorter median time to viral suppression than did the EFV-TDF-FTC group (28 vs. 84 days, P<0.001), as well as greater increases in CD4+ T-cell count (267 vs. 208 per cubic millimeter, P<0.001). The proportion of participants who discontinued therapy owing to adverse events was lower in the DTG-ABC-3TC group than in the EFV-TDF-FTC group (2% vs. 10%); rash and neuropsychiatric events (including abnormal dreams, anxiety, dizziness, and somnolence) were significantly more common in the EFV-TDF-FTC group, whereas insomnia was reported more frequently in the DTG-ABC-3TC group. No participants in the DTG-ABC-3TC group had detectable antiviral resistance; one tenofovir DF-associated mutation and four efavirenz-associated mutations were detected in participants with virologic failure in the EFV-TDF-FTC group. CONCLUSIONS: Dolutegravir plus abacavir-lamivudine had a better safety profile and was more effective through 48 weeks than the regimen with efavirenz-tenofovir DF-emtricitabine. Copyright © 2013 Massachusetts Medical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) catalyze the oxidative conversion of Δ5-3β-hydroxysteroids to the Δ4-3-keto configuration and is therefore essential for the biosynthesis of all classes of hormonal steroids, namely progesterone, glucocorticoids, mineralocorticoids, androgens, and estrogens. Using human 3β-HSD cDNA as probe, a human 3β-HSD gene was isolated from a λ-EMBL3 library of leucocyte genomic DNA. A fragment of 3β-HSD genomic DNA was also obtained by amplification of genomic DNA using the polymerase chain reaction. The 3β-HSD gene contains a 5′-untranslated exon of 53 base pairs (bp) and three successive translated exons of 232, 165, and 1218 bp, respectively, separated by introns of 129, 3883, and 2162 bp. The transcription start site is situated 267 nucleotides upstream from the ATG initiating codon. DNA sequence analysis of the 5′-flanking region reveals the existence of a putative TATA box (ATAAA) situated 28 nucleotides upstream from the transcription start site while a putative CAAT binding sequence is located 57 nucleotides upstream from the TATA box. Expression of a cDNA insert containing the coding region of 3β-HSD in nonsteroidogenic cells shows that the gene encodes a single 42-kDa protein containing both 3β-hydroxysteroid dehydrogenase and Δ5-Δ4-isomerase activities. Moreover, all natural steroid substrates tested are transformed with comparable efficiency by the enzyme. In addition to its importance for studies of the regulation of expression of 3β-HSD in gonadal as well as peripheral tissues, knowledge of the structure of the human 3β-HSD gene should permit investigation of the molecular defects responsible for 3β-HSD deficiency, the second most common cause of adrenal hyperplasia in children.