11 resultados para 1103

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider different types of fractional branes on a Z2 orbifold of the conifold and analyze in detail the corresponding gauge/gravity duality. The gauge theory possesses a rich and varied dynamics, both in the UV and in the IR. We find the dual supergravity solution, which contains both untwisted and twisted 3-form fluxes, related to what are known as deformation and N=2 fractional branes, respectively. We analyze the resulting renormalization group flow from the supergravity perspective, by developing an algorithm to easily extract it. We find hints of a generalization of the familiar cascade of Seiberg dualities due to a nontrivial interplay between the different types of fractional branes. We finally consider the IR behavior in several limits, where the dominant effective dynamics is either confining in a Coulomb phase or runaway, and discuss the resolution of singularities in the dual geometric background. © 2008 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the nonlinear theory. This is done in the context of gravitation, where the Taub-NUT solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses. © 2006 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of configuration mixing in the Pt region is investigated. For this chain of isotopes, the nature of the ground state changes smoothly, being spherical around mass A~174 and A~192 and deformed around the midshell N=104 region. This has a dramatic effect on the systematics of the energy spectra as compared to the systematics in the Pb and Hg nuclei. Interacting boson model with configuration mixing calculations are presented for gyromagnetic factors, α-decay hindrance factors, and isotope shifts. The necessity of incorporating intruder configurations to obtain an accurate description of the latter properties becomes evident. © 2011 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of constructing consistent parity-violating interactions for spin-3 gauge fields is considered in Minkowski space. Under the assumptions of locality, Poincaré invariance, and parity noninvariance, we classify all the nontrivial perturbative deformations of the Abelian gauge algebra. In space-time dimensions n=3 and n=5, deformations of the free theory are obtained which make the gauge algebra non-Abelian and give rise to nontrivial cubic vertices in the Lagrangian, at first order in the deformation parameter g. At second order in g, consistency conditions are obtained which the five-dimensional vertex obeys, but which rule out the n=3 candidate. Moreover, in the five-dimensional first-order deformation case, the gauge transformations are modified by a new term which involves the second de Wit-Freedman connection in a simple and suggestive way. © 2006 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By analyzing measured infrared absorption of pure CH4 gas under both "free" (large sample cell) and "confined" (inside the pores of a silica xerogel sample) conditions we give a demonstration that molecule-molecule and molecule-surface collisions lead to very different propensity rules for rotational-state changes. Whereas the efficiency of collisions to change the rotational state (observed through the broadening of the absorption lines) decreases with increasing rotational quantum number J for CH4-CH4 interactions, CH4-surface collisions lead to J-independent linewidths. In the former case, some (weak) collisions are inefficient whereas, in the latter case, a single collision is sufficient to remove the molecule from its initial rotational level. Furthermore, although some gas-phase collisions leave J unchanged and only modify the angular momentum orientation and/or symmetry of the level (as observed through the spectral effects of line mixing), this is not the case for the molecule-surface collisions since they always change J (in the studied J=0-14 range).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the mixing of the scalar glueball into the isosinglet mesons f0(1370), f0(1500), and f0(1710) to describe the two-body decays to pseudoscalars. We use an effective Hamiltonian and employ the two-angle mixing scheme for η and η′. In this framework, we analyze existing data and look forward to new data into η and η′ channels. For now, the f0(1710) has the largest glueball component and a sizable branching ratio into ηη′, testable at BESIII.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of a strong magnetic field on the neutron-drip transition in the crust of a magnetar is studied. The composition of the crust and the neutron-drip threshold are determined numerically for different magnetic field strengths using the experimental atomic mass measurements from the 2012 Atomic Mass Evaluation complemented with theoretical masses calculated from the Brussels-Montreal Hartree-Fock-Bogoliubov nuclear mass model HFB-24. The equilibrium nucleus at the neutron-drip point is found to be independent of the magnetic field strength. As demonstrated analytically, the neutron-drip density and pressure increase almost linearly with the magnetic field strength in the strongly quantizing regime for which electrons lie in the lowest Landau level. For weaker magnetic fields, the neutron-drip density exhibits typical quantum oscillations. In this case, the neutron-drip density can be either increased by about 14% or decreased by 25% depending on the magnetic field strength. These variations are shown to be almost universal, independently of the nuclear mass model employed. These results may have important implications for the physical interpretation of timing irregularities and quasiperiodic oscillations detected in soft gamma-ray repeaters and anomalous x-ray pulsars, as well as for the cooling of strongly magnetized neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Models of maximal flavor violation (MxFV) in elementary particle physics may contain at least one new scalar SU(2) doublet field ΦFV=(η0,η+) that couples the first and third generation quarks (q1, q3) via a Lagrangian term LFV=ξ13ΦFVq1q3. These models have a distinctive signature of same-charge top-quark pairs and evade flavor-changing limits from meson mixing measurements. Data corresponding to 2fb-1 collected by the Collider Dectector at Fermilab II detector in pp̄ collisions at s=1.96TeV are analyzed for evidence of the MxFV signature. For a neutral scalar η0 with mη0=200GeV/c2 and coupling ξ13=1, ∼11 signal events are expected over a background of 2.1±1.8 events. Three events are observed in the data, consistent with background expectations, and limits are set on the coupling ξ13 for mη0=180-300GeV/c2. © 2009 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the first measurement of b-quark fragmentation fractions into bottom hadrons in Run II of the Tevatron Collider at Fermilab. The result is based on a 360pb-1 sample of data collected with the CDF II detector in pp̄ collisions at s=1.96TeV. Semileptonic decays of B̄0, B-, and B̄s0 mesons, as well as Λb0 baryons, are reconstructed. For an effective bottom hadron pT threshold of 7GeV/c, the fragmentation fractions are measured to be fu/fd=1.054±0.018(stat)-0.045+0.025(sys)±0. 058(B), fs/(fu+fd)=0.160±0.005(stat)-0.010+0.011(sys)-0.034+0.057(B), and fΛb/(fu+fd)=0.281±0.012(stat)-0.056+0.058(sys)-0.087+0.128(B), where the uncertainty B is due to uncertainties on measured branching ratios. The value of fs/(fu+fd) agrees within one standard deviation with previous CDF measurements and the world average of this quantity, which is dominated by LEP measurements. However, the ratio fΛb/(fu+fd) is approximately twice the value previously measured at LEP. The approximately 2σ discrepancy is examined in terms of kinematic differences between the two production environments. © 2008 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50% for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schrödinger equation, finding good quantitative agreement over a range of input-pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input-pulse shot noise and the spontaneous Raman scattering down the fiber.