2 resultados para ”Learning by doing”

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we examine exchange rates in Vietnam’s transitional economy. Evidence of long-run equilibrium are established in most cases through a single co-integrating vector among endogenous variables that determine the real exchange rates. This supports relative PPP in which ECT of the system can be combined linearly into a stationary process, reducing deviation from PPP in the long run. Restricted coefficient vectors ß’ = (1, 1, -1) for real exchange rates of currencies in question are not rejected. This empirics of relative PPP adds to found evidences by many researchers, including Flre et al. (1999), Lee (1999), Johnson (1990), Culver and Papell (1999), Cuddington and Liang (2001). Instead of testing for different time series on a common base currency, we use different base currencies (USD, GBP, JPY and EUR). By doing so we want to know the whether theory may posit significant differences against one currency? We have found consensus, given inevitable technical differences, even with smallerdata sample for EUR. Speeds of convergence to PPP and adjustment are faster compared to results from other researches for developed economies, using both observed and bootstrapped HL measures. Perhaps, a better explanation is the adjustment from hyperinflation period, after which the theory indicates that adjusting process actually accelerates. We observe that deviation appears to have been large in early stages of the reform, mostly overvaluation. Over time, its correction took place leading significant deviations to gradually disappear.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statistical learning can be used to extract the words from continuous speech. Gómez, Bion, and Mehler (Language and Cognitive Processes, 26, 212–223, 2011) proposed an online measure of statistical learning: They superimposed auditory clicks on a continuous artificial speech stream made up of a random succession of trisyllabic nonwords. Participants were instructed to detect these clicks, which could be located either within or between words. The results showed that, over the length of exposure, reaction times (RTs) increased more for within-word than for between-word clicks. This result has been accounted for by means of statistical learning of the between-word boundaries. However, even though statistical learning occurs without an intention to learn, it nevertheless requires attentional resources. Therefore, this process could be affected by a concurrent task such as click detection. In the present study, we evaluated the extent to which the click detection task indeed reflects successful statistical learning. Our results suggest that the emergence of RT differences between within- and between-word click detection is neither systematic nor related to the successful segmentation of the artificial language. Therefore, instead of being an online measure of learning, the click detection task seems to interfere with the extraction of statistical regularities.