40 resultados para Pulmonary Tuberculosis
Resumo:
The search for novel vaccines against tuberculosis (TB) would benefit from in-depths knowledge of the human immune responses to Mycobacterium tuberculosis (Mtb) infection. Here, we characterised in a low TB incidence country, the immune responses to a new candidate vaccine antigen against TB, the heparin-binding haemagglutinin (HBHA), in young children in contact with an active TB case (aTB). Children with no history of BCG vaccination were compared to those vaccinated at birth to compare the initial immune responses to HBHA with secondary immune responses. Fifty-eight children with aTB and 76 with latent TB infection (LTBI) were included and they were compared to 90 non-infected children. Whereas Mtb-infected children globally secreted more interferon-gamma (IFN-γ) in response to HBHA compared to the non-infected children, these IFN-γ concentrations were higher in previously BCG-vaccinated compared to non-vaccinated children. The IFN-γ concentrations were similar in LTBI and aTB children, but appeared to differ qualitatively. Whereas the IFN-γ secretion induced by native methylated and recombinant non-methylated HBHA were well correlated for aTB, this was not the case for LTBI children. Thus, Mtb-infected young children develop IFN-γ responses to HBHA that are enhanced by prior BCG vaccination, indicating BCG-induced priming, thereby supporting a prime-boost strategy for HBHA-based vaccines. The qualitative differences between aTB and LTBI in their HBHA-induced IFN-γ responses may perhaps be exploited for diagnostic purposes.
Resumo:
The screening and treatment of latent tuberculosis (TB) infection reduces the risk of progression to active disease and is currently recommended for HIV-infected patients. The aim of this study is to evaluate, in a low TB incidence setting, the potential contribution of an interferon-gamma release assay in response to the mycobacterial latency antigen Heparin-Binding Haemagglutinin (HBHA-IGRA), to the detection of Mycobacterium tuberculosis infection in HIV-infected patients.
Resumo:
Objectives: One third of the world population is considered latently infected with Mycobacterium tuberculosis(LTBI) and sterilizing this reservoir of bacteria that may reactivate is required for tuberculosis (TB) elimination. Thegroup of individuals with LTBI is heterogeneous with some of them being more at risk to develop TB disease thanothers. Improved diagnosis of subjects with LTBI is needed, allowing to differentiate subjects with LTBI from thosewith active TB, and to select among LTBI subjects those who are more at risk to develop active TB. We havecharacterized at the cellular level both the quantitative and qualitative T cell responses to different mycobacterialantigens in selected populations of infected subjects in order to identify new biomarkers that could help to identify M.tuberculosis-infected subjects and to stratify them in risk groups for reactivation of the infection.Methods: Lymphoblast frequencies and cytokine production (IFN-γ, TNF-α, IL-2) among CD4+ and CD8+ T cellswere analyzed by flow cytometry after in vitro stimulation with the latency antigen heparin-binding haemagglutinin(HBHA) or early-secreted antigen Target-6 (ESAT-6) of peripheral blood mononuclear cells from clinically wellcharacterized M. tuberculosis-infected humans (28 LTBI, 22 TB disease,12 controls). The LTBI group definedaccording to the Center for Disease Control guidelines was subdivided into QuantiFERON-TB Gold in-Tube (QFT)positive and negative subgroups.Results: Similar to TB patients, QFT+ LTBI subjects had higher proportions of HBHA-induced TNF-αsingle+ CD4+lymphocytes than QFT- LTBI subjects (p<0.05). Compared to LTBI subjects, TB patients had higher frequencies ofESAT-6-induced CD8+ lymphoblasts (p<0.001), higher proportions of ESAT-6-induced IFN-γ+TNF-α+ CD4+ Tlymphocytes (p<0.05), and lower proportions of HBHA-induced IFN-γ+TNF-α+IL-2+ (p<0.05) CD4+ T lymphocytes.Conclusions: These data provide new biomarkers to discriminate active TB from LTBI, and more interestingly,help to identify LTBI subjects with increased likelihood to develop TB disease.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
CD4+ T cells are prominent effector cells in controlling Mycobacterium tuberculosis (Mtb) infection but may also contribute to immunopathology. Studies probing the CD4+ T cell response from individuals latently infected with Mtb or patients with active tuberculosis using either small or proteome-wide antigen screens so far revealed a multi-antigenic, yet mostly invariable repertoire of immunogenic Mtb proteins. Recent developments in mass spectrometry-based proteomics have highlighted the occurrence of numerous types of post-translational modifications (PTMs) in proteomes of prokaryotes, including Mtb. The well-known PTMs in Mtb are glycosylation, lipidation, or phosphorylation, known regulators of protein function or compartmentalization. Other PTMs include methylation, acetylation, and pupylation, involved in protein stability. While all PTMs add variability to the Mtb proteome, relatively little is understood about their role in the anti-Mtb immune responses. Here,we reviewMtb protein PTMs and methods to assess their role in protective immunity against Mtb. © 2014 van Els, Corbière, Smits, vanGaans-van den Brink, Poelen, Mascart, Meiring and Locht.
Resumo:
Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.
Resumo:
Today, tuberculosis (TB) still remains one of the main global causes of mortality and morbidity, and an effective vaccine against both TB disease and Mycobacterium tuberculosis infection is essential to reach the updated post-2015 Millennium development goal of eradicating TB by 2050. During the last two decades much knowledge has accumulated on the pathogenesis of TB and the immune responses to infection by M. tuberculosis. Furthermore, many vaccine candidates are under development, and close to 20 of them have entered clinical assessment at various levels. Nevertheless, the M. tuberculosis-host interaction is very complex, and the full complexity of this interaction is still not sufficiently well understood to develop novel, rationally designed vaccines. However, some of the recent knowledge is now integrated into the design of various types of vaccine candidates to be used either as pre-exposure, as post-exposure or as therapeutic vaccines, as will be discussed in this paper.
Resumo:
Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is a common complication in HIV-TB co-infected patients receiving combined antiretroviral therapy (cART). This study investigated a putative contribution of monocytes to the development of TB-IRIS.
Resumo:
info:eu-repo/semantics/published