17 resultados para 5th Sunday after Epiphany
Resumo:
Cryopreservation of ovarian tissue has been proposed for storing gametes of young patients at high risk of premature ovarian failure. Autotransplantation has recently provided some promising results and is still the unique option to restore ovarian function from cryopreserved ovarian tissue in humans. In this article, we analyse data from the combined orthotopic and heterotopic transplantation of cryopreserved ovarian tissue that restored the ovarian function and fertility. Orthotopic transplantation of cryopreserved ovarian tissue at ovarian and peritoneal sites, together with a heterotopic transplantation at the abdominal subcutaneous site, was performed to restore the ovarian function of a 29-year-old woman previously treated with bone marrow transplantation (BMT) for Hodgkin's disease. Ovarian reserve markers progressively suppress within values 5 months after the transplantation (basal FSH 5 mUI/ml and inhibin B 119 ng/ml). Follicular development was observed at all transplantation sites but was predominant at the ovarian site. Six natural cycles were fully documented and analysed. The patient became spontaneously pregnant following the sixth cycle, but unfortunately she later miscarried. Combined orthotopic and heterotopic transplantations succeeded in the restoration of normal spontaneous cycles. Furthermore, this spontaneous pregnancy confirmed the efficiency of this procedure for restoring human fertility.
Resumo:
The normal immune response of A/J mice against arsonate coupled to hemocyanin is characterized by a major recurrent cross-reactive Id, the CRIA. This Id is encoded by a single gene segment combination: VHidcr11-DFL16.1e-JH2 for the H chain and Vkidcr-Jk1 for the L chain. In this report, we show that lethal irradiation of A/J mice followed by reconstitution with autologous or syngeneic lymphoid cells results in loss of major CRIA Id expression in the response to arsonate. Different protocols were performed to repopulate the irradiated mice. First, lethally irradiated A/J mice were reconstituted by the transfer of syngeneic bone marrow cells. Second, A/J mice were lethally irradiated while their hind limbs were partially shielded. Third, lethally irradiated A/J mice received a transfer of syngeneic spleen cells. The three groups of mice produce high titers of antiarsonate antibodies completely devoid of CRIA DH-JH related idiotopes expression. Moreover, a lack of affinity maturation is observed in the secondary antiarsonate response of all irradiated and reconstituted mice. A transfer of syngeneic peritoneal cells or a transfer of primed T cells in irradiated and reconstituted A/J mice do not restore in a significant manner either the recurrent CRIA expression or the affinity maturation of the antiarsonate response. Our data suggest that the choice of this Id is not solely dictated by the Igh locus.