9 resultados para wireless communications
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Ultra Wide Band (UWB) transmission has recently been the object of considerable attention in the field of next generation location aware wireless sensor networks. This is due to its fine time resolution, energy efficient and robustness to interference in harsh environments. This paper presents a thorough applied examination of prototype IEEE 802.15.4a impulse UWB transceiver technology to quantify the effect of line of sight (LOS) and non line of sight (NLOS) ranging in real indoor and outdoor environments. Results included draw on an extensive array of experiments that fully characterize the 802.15.4a UWB transceiver technology, its reliability and ranging capabilities for the first time. A new two way (TW) ranging protocol is proposed. The goal of this work is to validate the technology as a dependable wireless communications mechanism for the subset of sensor network localization applications where reliability and precision positions are key concerns.
Resumo:
Body Sensor Network (BSN) technology is seeing a rapid emergence in application areas such as health, fitness and sports monitoring. Current BSN wireless sensors typically operate on a single frequency band (e.g. utilizing the IEEE 802.15.4 standard that operates at 2.45GHz) employing a single radio transceiver for wireless communications. This allows a simple wireless architecture to be realized with low cost and power consumption. However, network congestion/failure can create potential issues in terms of reliability of data transfer, quality-of-service (QOS) and data throughput for the sensor. These issues can be especially critical in healthcare monitoring applications where data availability and integrity is crucial. The addition of more than one radio has the potential to address some of the above issues. For example, multi-radio implementations can allow access to more than one network, providing increased coverage and data processing as well as improved interoperability between networks. A small number of multi-radio wireless sensor solutions exist at present but require the use of more than one radio transceiver devices to achieve multi-band operation. This paper presents the design of a novel prototype multi-radio hardware platform that uses a single radio transceiver. The proposed design allows multi-band operation in the 433/868MHz ISM bands and this, together with its low complexity and small form factor, make it suitable for a wide range of BSN applications.
Resumo:
Mobile and wireless networks have long exploited mobility predictions, focused on predicting the future location of given users, to perform more efficient network resource management. In this paper, we present a new approach in which we provide predictions as a probability distribution of the likelihood of moving to a set of future locations. This approach provides wireless services a greater amount of knowledge and enables them to perform more effectively. We present a framework for the evaluation of this new type of predictor, and develop 2 new predictors, HEM and G-Stat. We evaluate our predictors accuracy in predicting future cells for mobile users, using two large geolocation data sets, from MDC [11], [12] and Crawdad [13]. We show that our predictors can successfully predict with as low as an average 2.2% inaccuracy in certain scenarios.
Resumo:
At a time when technological advances are providing new sensor capabilities, novel network capabilities, long-range communications technologies and data interpreting and delivery formats via the World Wide Web, we never before had such opportunities to sense and analyse the environment around us. However, the challenges exist. While measurement and detection of environmental pollutants can be successful under laboratory-controlled conditions, continuous in-situ monitoring remains one of the most challenging aspects of environmental sensing. This paper describes the development and test of a multi-sensor heterogeneous real-time water monitoring system. A multi-sensor system was deployed in the River Lee, County Cork, Ireland to monitor water quality parameters such as pH, temperature, conductivity, turbidity and dissolved oxygen. The R. Lee comprises of a tidal water system that provides an interesting test site to monitor. The multi-sensor system set-up is described and results of the sensor deployment and the various challenges are discussed.
The s-mote: a versatile heterogeneous multi-radio platform for wireless sensor networks applications
Resumo:
This paper presents a novel architecture and its implementation for a versatile, miniaturised mote which can communicate concurrently using a variety of combinations of ISM bands, has increased processing capability, and interoperability with mainstream GSM technology. All these features are integrated in a small form factor platform. The platform can have many configurations which could satisfy a variety of applications’ constraints. To the best of our knowledge, it is the first integrated platform of this type reported in the literature. The proposed platform opens the way for enhanced levels of Quality of Service (QoS), with respect to reliability, availability and latency, in addition to facilitating interoperability and power reduction compared to existing platforms. The small form factor also allows potential of integration with other mobile platforms including smart phones.
Resumo:
Wireless Inertial Measurement Units (WIMUs) combine motion sensing, processing & communications functionsin a single device. Data gathered using these sensors has the potential to be converted into high quality motion data. By outfitting a subject with multiple WIMUs full motion data can begathered. With a potential cost of ownership several orders of magnitude less than traditional camera based motion capture, WIMU systems have potential to be crucially important in supplementing or replacing traditional motion capture and opening up entirely new application areas and potential markets particularly in the rehabilitative, sports & at-home healthcarespaces. Currently WIMUs are underutilized in these areas. A major barrier to adoption is perceived complexity. Sample rates, sensor types & dynamic sensor ranges may need to be adjusted on multiple axes for each device depending on the scenario. As such we present an advanced WIMU in conjunction with a Smart WIMU system to simplify this aspect with 3 usage modes: Manual, Intelligent and Autonomous. Attendees will be able to compare the 3 different modes and see the effects of good andbad set-ups on the quality of data gathered in real time.
Resumo:
This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.
Resumo:
My original contribution to knowledge is the creation of a WSN system that further improves the functionality of existing technology, whilst achieving improved power consumption and reliability. This thesis concerns the development of industrially applicable wireless sensor networks that are low-power, reliable and latency aware. This work aims to improve upon the state of the art in networking protocols for low-rate multi-hop wireless sensor networks. Presented is an application-driven co-design approach to the development of such a system. Starting with the physical layer, hardware was designed to meet industry specified requirements. The end system required further investigation of communications protocols that could achieve the derived application-level system performance specifications. A CSMA/TDMA hybrid MAC protocol was developed, leveraging numerous techniques from the literature and novel optimisations. It extends the current art with respect to power consumption for radio duty-cycled applications, and reliability, in dense wireless sensor networks, whilst respecting latency bounds. Specifically, it provides 100% packet delivery for 11 concurrent senders transmitting towards a single radio duty cycled sink-node. This is representative of an order of magnitude improvement over the comparable art, considering MAC-only mechanisms. A novel latency-aware routing protocol was developed to exploit the developed hardware and MAC protocol. It is based on a new weighted objective function with multiple fail safe mechanisms to ensure extremely high reliability and robustness. The system was empirically evaluated on two hardware platforms. These are the application-specific custom 868 MHz node and the de facto community-standard TelosB. Extensive empirical comparative performance analyses were conducted against the relevant art to demonstrate the advances made. The resultant system is capable of exceeding 10-year battery life, and exhibits reliability performance in excess of 99.9%.
Resumo:
We measure quality of service (QoS) in a wireless network architecture of transoceanic aircraft. A distinguishing characteristic of the network scheme we analyze is that it mixes the concept of Delay Tolerant Networking (DTN) through the exploitation of opportunistic contacts, together with direct satellite access in a limited number of the nodes. We provide a graph sparsification technique for deriving a network model that satisfies the key properties of a real aeronautical opportunistic network while enabling scalable simulation. This reduced model allows us to analyze the impact regarding QoS of introducing Internet-like traffic in the form of outgoing data from passengers. Promoting QoS in DTNs is usually really challenging due to their long delays and scarce resources. The availability of satellite communication links offers a chance to provide an improved degree of service regarding a pure opportunistic approach, and therefore it needs to be properly measured and quantified. Our analysis focuses on several QoS indicators such as delivery time, delivery ratio, and bandwidth allocation fairness. Obtained results show significant improvements in all metric indicators regarding QoS, not usually achievable on the field of DTNs.