7 resultados para wide area measurement system (WAMS)

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a prototype of miniaturized, low power, bi-directional wireless sensor node for wireless sensor networks (WSN) was designed for doors and windows building monitoring. The capacitive pressure sensors have been developed particularly for such application, where packaging size and minimization of the power requirements of the sensors are the major drivers. The capacitive pressure sensors have been fabricated using a 2.4 mum thick strain compensated heavily boron doped SiGeB diaphragm is presented. In order to integrate the sensors with the wireless module, the sensor dice was wire bonded onto TO package using chip on board (COB) technology. The telemetric link and its capabilities to send information for longer range have been significantly improved using a new design and optimization process. The simulation tool employed for this work was the Designerreg tool from Ansoft Corporation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel miniaturised system for measurement of the in-flight characteristics of an arrow is introduced in this paper. The system allows the user to measure in-flight parameters such as the arrow’s speed, kinetic energy and momentum, arrow drag and vibrations of the arrow shaft. The system consists of electronics, namely a three axis accelerometer, shock switch, microcontroller and EEPROM memory embedded in the arrow tip. The system also includes a docking station for download and processing of in-flight ballistic data from the tip to provide the measured values. With this system, a user can evaluate and optimize their archery equipment setup based on measured ballistic values. Recent test results taken at NIST show the accuracy of the launch velocities to be within +/- 0.59%, when compared with NIST’s most accurate ballistic chronograph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effects of antenna detuning on wireless devices caused by the presence of the human body,particularly the wrist. To facilitate repeatable and consistent antenna impedance measurements, an accurate and low cost human phantom arm, that simulates human tissue at 433MHz frequencies, has been developed and characterized. An accurate and low cost hardware prototype system has been developed to measure antenna return loss at a frequency of 433MHz and the design, fabrication and measured results are presented. This system provides a flexible means of evaluating closed-loop reconfigurable antenna tuning circuits for use in wireless mote applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work employs a custom built body area network of wireless inertial measurement technology to conduct a biomechanical analysis of precision targeted throwing in competitive and recreational darts. The solution is shown to be capable of measuring key biomechanical factors including speed, acceleration and timing. These parameters are subsequently correlated with scoring performance to determine the affect each variable has on outcome. For validation purposes an optical 3D motion capture system provides a complete kinematic model of the subject and enables concurrent benchmarking of the 'gold standard' optical inertial measurement system with the more affordable and proactive wireless inertial measurement solution developed as part of this work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional motion capture techniques, for instance, those employing optical technology, have long been used in the area of rehabilitation, sports medicine and performance analysis, where accurately capturing bio-mechanical data is of crucial importance. However their size, cost, complexity and lack of portability mean that their use is often impractical. Low cost MEMS inertial sensors when combined and assembled into a Wireless Inertial Measurement Unit (WIMU) present a possible solution for low cost and highly portable motion capture. However due to the large variability inherent to MEMS sensors, such a system would need extensive characterization to calibrate each sensor and ensure good quality data capture. A completely calibrated WIMU system would allow for motion capture in a wider range of real-world, non-laboratory based applications. Calibration can be a complex task, particularly for newer, multi-sensing range capable inertial sensors. As such we present an automated system for quickly and easily calibrating inertial sensors in a packaged WIMU, demonstrating some of the improvements in accuracy attainable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless Inertial Measurement Units (WIMUs) combine motion sensing, processing & communications functionsin a single device. Data gathered using these sensors has the potential to be converted into high quality motion data. By outfitting a subject with multiple WIMUs full motion data can begathered. With a potential cost of ownership several orders of magnitude less than traditional camera based motion capture, WIMU systems have potential to be crucially important in supplementing or replacing traditional motion capture and opening up entirely new application areas and potential markets particularly in the rehabilitative, sports & at-home healthcarespaces. Currently WIMUs are underutilized in these areas. A major barrier to adoption is perceived complexity. Sample rates, sensor types & dynamic sensor ranges may need to be adjusted on multiple axes for each device depending on the scenario. As such we present an advanced WIMU in conjunction with a Smart WIMU system to simplify this aspect with 3 usage modes: Manual, Intelligent and Autonomous. Attendees will be able to compare the 3 different modes and see the effects of good andbad set-ups on the quality of data gathered in real time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sudden changes in the stiffness of a structure are often indicators of structural damage. Detection of such sudden stiffness change from the vibrations of structures is important for Structural Health Monitoring (SHM) and damage detection. Non-contact measurement of these vibrations is a quick and efficient way for successful detection of sudden stiffness change of a structure. In this paper, we demonstrate the capability of Laser Doppler Vibrometry to detect sudden stiffness change in a Single Degree Of Freedom (SDOF) oscillator within a laboratory environment. The dynamic response of the SDOF system was measured using a Polytec RSV-150 Remote Sensing Vibrometer. This instrument employs Laser Doppler Vibrometry for measuring dynamic response. Additionally, the vibration response of the SDOF system was measured through a MicroStrain G-Link Wireless Accelerometer mounted on the SDOF system. The stiffness of the SDOF system was experimentally determined through calibrated linear springs. The sudden change of stiffness was simulated by introducing the failure of a spring at a certain instant in time during a given period of forced vibration. The forced vibration on the SDOF system was in the form of a white noise input. The sudden change in stiffness was successfully detected through the measurements using Laser Doppler Vibrometry. This detection from optically obtained data was compared with a detection using data obtained from the wireless accelerometer. The potential of this technique is deemed important for a wide range of applications. The method is observed to be particularly suitable for rapid damage detection and health monitoring of structures under a model-free condition or where information related to the structure is not sufficient.